File size: 5,734 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
from nemo.collections.asr.parts.utils.vad_utils import vad_tune_threshold_on_dev
from nemo.utils import logging
"""
This script is designed for thresholds tuning for postprocessing of VAD
See details about it in nemo/collections/asr/parts/utils/vad_utils/binarization and filtering
Usage:
python vad_tune_threshold.py \
--onset_range="0,1,0.2" --offset_range="0,1,0.2" --min_duration_on_range="0.1,0.8,0.05" --min_duration_off_range="0.1,0.8,0.05" --not_filter_speech_first \
--vad_pred=<FULL PATH OF FOLDER OF FRAME LEVEL PREDICTION FILES> \
--groundtruth_RTTM=<DIRECTORY OF VAD PREDICTIONS OR A FILE CONTAINS THE PATHS OF THEM> \
--vad_pred_method="median"
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--onset_range", help="range of onset in list 'START,END,STEP' to be tuned on", type=str)
parser.add_argument("--offset_range", help="range of offset in list 'START,END,STEP' to be tuned on", type=str)
parser.add_argument(
"--pad_onset_range",
help="range of pad_onset in list 'START,END,STEP' to be tuned on. pad_onset could be negative float",
type=str,
)
parser.add_argument(
"--pad_offset_range",
help="range of pad_offset in list 'START,END,STEP' to be tuned on. pad_offset could be negative float",
type=str,
)
parser.add_argument(
"--min_duration_on_range", help="range of min_duration_on in list 'START,END,STEP' to be tuned on", type=str
)
parser.add_argument(
"--min_duration_off_range", help="range of min_duration_off in list 'START,END,STEP' to be tuned on", type=str
)
parser.add_argument(
"--not_filter_speech_first",
help="Whether to filter short speech first during filtering, should be either True or False!",
action='store_true',
)
parser.add_argument(
"--vad_pred", help="Directory of vad predictions or a file contains the paths of them.", required=True
)
parser.add_argument(
"--groundtruth_RTTM",
help="Directory of groundtruch rttm files or a file contains the paths of them",
type=str,
required=True,
)
parser.add_argument(
"--result_file", help="Filename of txt to store results", default="res",
)
parser.add_argument(
"--vad_pred_method",
help="suffix of prediction file. Should be either in 'frame', 'mean' or 'median'",
required=True,
)
parser.add_argument(
"--focus_metric",
help="metrics we care most when tuning threshold. Should be either in 'DetER', 'FA', 'MISS' ",
type=str,
default='DetER',
)
parser.add_argument(
"--frame_length_in_sec", help="frame_length_in_sec ", type=float, default=0.01,
)
args = parser.parse_args()
params = {}
try:
# if not input range for values of parameters, use default value defined in function binarization and filtering in nemo/collections/asr/parts/utils/vad_utils.py
if args.onset_range:
start, stop, step = [float(i) for i in args.onset_range.split(",")]
onset = np.arange(start, stop, step)
params['onset'] = onset
if args.offset_range:
start, stop, step = [float(i) for i in args.offset_range.split(",")]
offset = np.arange(start, stop, step)
params['offset'] = offset
if args.pad_onset_range:
start, stop, step = [float(i) for i in args.pad_onset_range.split(",")]
pad_onset = np.arange(start, stop, step)
params['pad_onset'] = pad_onset
if args.pad_offset_range:
start, stop, step = [float(i) for i in args.pad_offset_range.split(",")]
pad_offset = np.arange(start, stop, step)
params['pad_offset'] = pad_offset
if args.min_duration_on_range:
start, stop, step = [float(i) for i in args.min_duration_on_range.split(",")]
min_duration_on = np.arange(start, stop, step)
params['min_duration_on'] = min_duration_on
if args.min_duration_off_range:
start, stop, step = [float(i) for i in args.min_duration_off_range.split(",")]
min_duration_off = np.arange(start, stop, step)
params['min_duration_off'] = min_duration_off
if args.not_filter_speech_first:
params['filter_speech_first'] = False
except:
raise ValueError(
"Theshold input is invalid! Please enter it as a 'START,STOP,STEP' for onset, offset, min_duration_on and min_duration_off, and enter True/False for filter_speech_first"
)
best_threhsold, optimal_scores = vad_tune_threshold_on_dev(
params,
args.vad_pred,
args.groundtruth_RTTM,
args.result_file,
args.vad_pred_method,
args.focus_metric,
args.frame_length_in_sec,
)
logging.info(
f"Best combination of thresholds for binarization selected from input ranges is {best_threhsold}, and the optimal score is {optimal_scores}"
)
|