File size: 5,714 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch.optim.optimizer import Optimizer

__all__ = ['Novograd']


def _check_valid_opt_params(lr, eps, betas):
    if lr < 0:
        raise ValueError(f"Invalid learning rate: {lr}")
    if eps < 0:
        raise ValueError(f"Invalid epsilon value: {eps}")
    if not (0.0 <= betas[0] < 1.0 and 0.0 <= betas[1] < 1.0):
        raise ValueError(f"Betas have to be between 0 and 1: {betas}")


class Novograd(Optimizer):
    """Implements Novograd algorithm.
    It has been proposed  in "Stochastic Gradient Methods with Layer-wise
    Adaptive Moments for Training of Deep Networks"
    (https://arxiv.org/abs/1905.11286)
    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper "On the Convergence of Adam and Beyond"
    """

    def __init__(
        self,
        params,
        lr=1e-3,
        betas=(0.95, 0.98),
        eps=1e-8,
        weight_decay=0,
        grad_averaging=False,
        amsgrad=False,
        luc=False,
        luc_trust=1e-3,
        luc_eps=1e-8,
    ):
        _check_valid_opt_params(lr, eps, betas)
        defaults = dict(
            lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad,
        )
        self.luc = luc
        self.luc_trust = luc_trust
        self.luc_eps = luc_eps
        super(Novograd, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(Novograd, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault("amsgrad", False)

    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError("Sparse gradients are not supported.")
                amsgrad = group["amsgrad"]
                state = self.state[p]

                # State initialization
                if not state:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
                    if amsgrad:
                        # Maintains max of all exp moving avg of squared grad
                        state["max_exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                if amsgrad:
                    max_exp_avg_sq = state["max_exp_avg_sq"]
                beta1, beta2 = group["betas"]

                state["step"] += 1

                norm = grad.norm().pow(2)

                if exp_avg_sq == 0:
                    exp_avg_sq.copy_(norm)
                else:
                    exp_avg_sq.mul_(beta2).add_(norm, alpha=1.0 - beta2)

                if amsgrad:
                    # Maintains max of all 2nd moment running avg till now
                    torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                    # Use the max for normalizing running avg. of gradient
                    denom = max_exp_avg_sq.sqrt().add_(group["eps"])
                else:
                    denom = exp_avg_sq.sqrt().add_(group["eps"])

                grad.div_(denom)
                if group["weight_decay"] != 0:
                    grad.add_(p.data, alpha=group["weight_decay"])
                if group["grad_averaging"]:
                    grad.mul_(1 - beta1)
                exp_avg.mul_(beta1).add_(grad)

                if self.luc:
                    # Clip update so that updates are less than eta*weights
                    data_norm = torch.norm(p.data)
                    grad_norm = torch.norm(exp_avg.data)
                    luc_factor = self.luc_trust * data_norm / (grad_norm + self.luc_eps)
                    luc_factor = min(luc_factor, group["lr"])
                    p.data.add_(exp_avg, alpha=-luc_factor)
                else:
                    p.data.add_(exp_avg, alpha=-group["lr"])

        return loss