File size: 12,615 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
from pathlib import Path
from typing import Dict, List, Union
import torch.cuda
from nemo.collections.nlp.models import PunctuationCapitalizationLexicalAudioModel, PunctuationCapitalizationModel
"""
This script is for restoring punctuation and capitalization.
Usage example:
python punctuate_capitalize.py \
--input_manifest <PATH/TO/INPUT/MANIFEST> \
--output_manifest <PATH/TO/OUTPUT/MANIFEST>
Usage example for lexical audio model:
python punctuate_capitalize.py \
--input_manifest <PATH/TO/INPUT/MANIFEST> \
--output_manifest <PATH/TO/OUTPUT/MANIFEST> \
--use_audio
<PATH/TO/INPUT/MANIFEST> is a path to NeMo ASR manifest. Usually it is an output of
NeMo/examples/asr/transcribe_speech.py but can be a manifest with 'text' key. Alternatively you can use
--input_text parameter for passing text for inference.
<PATH/TO/OUTPUT/MANIFEST> is a path to NeMo ASR manifest into which script output will be written. Alternatively
you can use parameter --output_text.
For more details on this script usage look in argparse help.
"""
def get_args() -> argparse.Namespace:
default_model_parameter = "pretrained_name"
default_model = "punctuation_en_bert"
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="The script is for restoring punctuation and capitalization in text or text and audio. To use text and audio use '--use_audio'. Long strings are split into "
"segments of length `--max_seq_length`. `--max_seq_length` is the length which includes [CLS] and [SEP] "
"tokens. If `--use_audio` is set, samples with texts longer than `--max_seq_length` will be ignored. Parameter `--step` controls segments overlapping. `--step` is a distance between beginnings of "
"consequent segments. Model outputs for tokens near the borders of tensors are less accurate and can be "
"discarded before final predictions computation. Parameter `--margin` is number of discarded outputs near "
"segments borders. Probabilities of tokens in overlapping parts of segments multiplied before selecting the "
"best prediction. Default values of parameters `--max_seq_length`, `--step`, and `--margin` are optimal for "
"IWSLT 2019 test dataset.",
)
parser.add_argument(
'--use_audio',
required=False,
action="store_true",
help="If set `PunctuationCapitalizationLexicalAudioModel` will be used for inference",
)
input_ = parser.add_mutually_exclusive_group(required=True)
input_.add_argument(
"--input_manifest",
"-m",
type=Path,
help="Path to the file with NeMo manifest which needs punctuation and capitalization. If the first element "
"of manifest contains key 'pred_text', 'pred_text' values are passed for tokenization. Otherwise 'text' "
"values are passed for punctuation and capitalization. Exactly one parameter of `--input_manifest` and "
"`--input_text` should be provided.",
)
input_.add_argument(
"--input_text",
"-t",
type=Path,
help="Path to file with text which needs punctuation and capitalization. Exactly one parameter of "
"`--input_manifest` and `--input_text` should be provided.",
)
parser.add_argument(
'--audio_file',
required=False,
type=Path,
help="Path to file with paths to audio. One path per row. Required if '--input_text' provided. Else 'audio_filepath' from manifest will be used.",
)
output = parser.add_mutually_exclusive_group(required=True)
output.add_argument(
"--output_manifest",
"-M",
type=Path,
help="Path to output NeMo manifest. Text with restored punctuation and capitalization will be saved in "
"'pred_text' elements if 'pred_text' key is present in the input manifest. Otherwise text with restored "
"punctuation and capitalization will be saved in 'text' elements. Exactly one parameter of `--output_manifest` "
"and `--output_text` should be provided.",
)
output.add_argument(
"--output_text",
"-T",
type=Path,
help="Path to file with text with restored punctuation and capitalization. Exactly one parameter of "
"`--output_manifest` and `--output_text` should be provided.",
)
model = parser.add_mutually_exclusive_group(required=False)
model.add_argument(
"--pretrained_name",
"-p",
help=f"The name of NGC pretrained model. No more than one of parameters `--pretrained_name`, `--model_path`"
f"should be provided. If neither of parameters `--pretrained_name` and `--model_path` are provided, then the "
f"script is run with `--{default_model_parameter}={default_model}`.",
choices=[m.pretrained_model_name for m in PunctuationCapitalizationModel.list_available_models()]
+ [m.pretrained_model_name for m in PunctuationCapitalizationLexicalAudioModel.list_available_models()],
)
model.add_argument(
"--model_path",
"-P",
type=Path,
help=f"Path to .nemo checkpoint of punctuation and capitalization model. No more than one of parameters "
f"`--pretrained_name` and `--model_path` should be provided. If neither of parameters `--pretrained_name` and "
f"`--model_path` are provided, then the script is run with `--{default_model_parameter}={default_model}`.",
)
parser.add_argument(
"--max_seq_length",
"-L",
type=int,
default=64,
help="Length of segments into which queries are split. `--max_seq_length` includes [CLS] and [SEP] tokens.",
)
parser.add_argument(
"--step",
"-s",
type=int,
default=8,
help="Relative shift of consequent segments into which long queries are split. Long queries are split into "
"segments which can overlap. Parameter `step` controls such overlapping. Imagine that queries are "
"tokenized into characters, `max_seq_length=5`, and `step=2`. In such a case query 'hello' is tokenized "
"into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`.",
)
parser.add_argument(
"--margin",
"-g",
type=int,
default=16,
help="A number of subtokens in the beginning and the end of segments which output probabilities are not used "
"for prediction computation. The first segment does not have left margin and the last segment does not have "
"right margin. For example, if input sequence is tokenized into characters, `max_seq_length=5`, `step=1`, "
"and `margin=1`, then query 'hello' will be tokenized into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], "
"['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`. These segments are passed to the "
"model. Before final predictions computation, margins are removed. In the next list, subtokens which logits "
"are not used for final predictions computation are marked with asterisk: `[['[CLS]'*, 'h', 'e', 'l'*, "
"'[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]`.",
)
parser.add_argument(
"--batch_size", "-b", type=int, default=128, help="Number of segments which are processed simultaneously.",
)
parser.add_argument(
"--save_labels_instead_of_text",
"-B",
action="store_true",
help="If this option is set, then punctuation and capitalization labels are saved instead text with restored "
"punctuation and capitalization. Labels are saved in format described here "
"https://docs.nvidia.com/deeplearning/nemo/"
"user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format",
)
parser.add_argument(
"--device",
"-d",
choices=['cpu', 'cuda'],
help="Which device to use. If device is not set and CUDA is available, then GPU will be used. If device is "
"not set and CUDA is not available, then CPU is used.",
)
parser.add_argument(
"--sample_rate",
type=int,
default=16000,
help="Target sample rate for audios if `--use_audio` was passed",
required=False,
)
args = parser.parse_args()
if args.input_manifest is None and args.output_manifest is not None:
parser.error("--output_manifest requires --input_manifest")
if args.use_audio and (args.input_manifest is None and args.audio_file is None):
parser.error("--use_audio and --input_text require --audio_file")
if args.pretrained_name is None and args.model_path is None:
setattr(args, default_model_parameter, default_model)
for name in ["input_manifest", "input_text", "output_manifest", "output_text", "model_path", "audio_file"]:
if getattr(args, name) is not None:
setattr(args, name, getattr(args, name).expanduser())
return args
def load_manifest(manifest: Path) -> List[Dict[str, Union[str, float]]]:
result = []
with manifest.open() as f:
for i, line in enumerate(f):
data = json.loads(line)
result.append(data)
return result
def main() -> None:
args = get_args()
if args.pretrained_name is None:
model = (
PunctuationCapitalizationModel.restore_from(args.model_path)
if not args.use_audio
else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path)
)
else:
model = (
PunctuationCapitalizationModel.from_pretrained(args.pretrained_name)
if not args.use_audio
else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path)
)
if args.device is None:
if torch.cuda.is_available():
model = model.cuda()
else:
model = model.cpu()
else:
model = model.to(args.device)
if args.input_manifest is None:
texts = []
audios = []
with args.input_text.open() as f:
for line in f:
texts.append(line.strip())
if args.use_audio:
with args.audio_file.open() as f:
for line in f:
audios.append(line.strip())
else:
manifest = load_manifest(args.input_manifest)
text_key = "pred_text" if "pred_text" in manifest[0] else "text"
texts = []
audios = []
for item in manifest:
texts.append(item[text_key])
if args.use_audio:
audios.append(item["audio_filepath"])
if args.use_audio:
processed_texts = model.add_punctuation_capitalization(
texts,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
step=args.step,
margin=args.margin,
return_labels=args.save_labels_instead_of_text,
audio_queries=audios,
target_sr=args.sample_rate,
)
else:
processed_texts = model.add_punctuation_capitalization(
texts,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
step=args.step,
margin=args.margin,
return_labels=args.save_labels_instead_of_text,
)
if args.output_manifest is None:
args.output_text.parent.mkdir(exist_ok=True, parents=True)
with args.output_text.open('w') as f:
for t in processed_texts:
f.write(t + '\n')
else:
args.output_manifest.parent.mkdir(exist_ok=True, parents=True)
with args.output_manifest.open('w') as f:
for item, t in zip(manifest, processed_texts):
item[text_key] = t
f.write(json.dumps(item) + '\n')
if __name__ == "__main__":
main()
|