File size: 16,831 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import multiprocessing as mp
from pathlib import Path

from nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset import (
    DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME,
    DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME,
    METADATA_CAPIT_LABEL_VOCAB_KEY,
    METADATA_PUNCT_LABEL_VOCAB_KEY,
    build_label_ids_from_list_of_labels,
    check_labels_for_being_unique_before_building_label_ids,
    check_tar_file_prefix,
    create_tarred_dataset,
)


"""
A tarred dataset allows to train on large amounts without storing it all into memory simultaneously. In case of
punctuation and capitalization model, tarred dataset is a directory which contains metadata file, tar files with
batches, punct_label_vocab.csv and capit_label_vocab.csv files.

A metadata file is a JSON file with 4 fields: 'num_batches', 'tar_files', 'punct_label_vocab_file',
'capit_label_vocab_file'. 'num_batches' (int) is a total number of batches in tarred dataset. 'tar_files' is a list of
paths to tar files relative to directory containing the metadata file. 'punct_label_vocab_file' and
'capit_label_vocab_file' are paths to .csv files containing all unique punctuation and capitalization labels. Each
label in these files is written in a separate line. The first labels in both files are equal and serve for padding and
as neutral labels.

Every tar file contains objects written using `webdataset.TarWriter`. Each object is a dictionary with two items:
'__key__' and 'batch.pyd'. '__key__' is a name of a batch and 'batch.pyd' is a pickled dictionary which contains
'input_ids', 'subtokens_mask', 'punct_labels', 'capit_labels'. 'input_ids' is an array containing ids of source tokens,
'subtokens_mask' is a boolean array showing first tokens in words, 'punct_labels' and 'capit_labels' are arrays with
ids of labels. Metadata file should be passed to constructor of
`nemo.collections.nlp.data.token_classification.PunctuationCapitalizationTarredDataset` and the instance of 
the class will handle iteration and constructing masks and token types for BERT model.

Example of usage:

python create_punctuation_capitalization_tarred_dataset.py \
  --text <PATH/TO/TEXT/FILE> \
  --labels <PATH/TO/LABELS/FILE> \
  --output_dir <PATH/TO/OUTPUT/DIR> \
  --lines_per_dataset_fragment 10000 \
  --tokens_in_batch 8000 \
  --num_batches_per_tarfile 5 \
  --tokenizer_name char \
  --vocab_file <PATH_TO_CHAR_TOKENIZER_VOCABULARY>
"""


def get_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=f"A tarred dataset allows to train on large amounts without storing it all into memory "
        f"simultaneously. In case of punctuation and capitalization model, tarred dataset is a directory which "
        f"contains metadata file, tar files with batches, {DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME} and "
        f"{DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME} files. A metadata file is a JSON file with 4 fields: 'num_batches', "
        f"'tar_files', '{METADATA_PUNCT_LABEL_VOCAB_KEY}', '{METADATA_CAPIT_LABEL_VOCAB_KEY}'. 'num_batches' (int) is "
        f"a total number of batches in tarred dataset. 'tar_files' is a list of paths to tar files relative "
        f"to directory containing the metadata file. '{METADATA_PUNCT_LABEL_VOCAB_KEY}' and "
        f"'{METADATA_CAPIT_LABEL_VOCAB_KEY}' are paths to .csv files containing all unique punctuation and "
        f"capitalization labels. Each label in these files is written in a separate line. The first labels in both "
        f"files are equal and serve for padding and as neutral labels. Every tar file contains objects written "
        f"using `webdataset.TarWriter`. Each object is a dictionary with two items: '__key__' and 'batch.pyd'. "
        f"'__key__' is a name of a batch and 'batch.pyd' is a pickled dictionary which contains 'input_ids', "
        f"'subtokens_mask', 'punct_labels', 'capit_labels'. 'input_ids' is an array containing ids of source tokens, "
        f"'subtokens_mask' is a boolean array showing first tokens in words, 'punct_labels' and 'capit_labels' are "
        f"arrays with ids of labels. Metadata file should be passed to constructor of "
        "`nemo.collections.nlp.data.token_classification.PunctuationCapitalizationTarredDataset` and the instance of "
        "the class will handle iteration and constructing masks and token types for BERT model.",
    )
    parser.add_argument(
        "--text",
        "-t",
        help="Path to source lowercased text without punctuation. Number of lines in `--text` file has to be equal "
        "to number of lines in `--labels` file.",
        type=Path,
        required=True,
    )
    parser.add_argument(
        "--audio_file",
        type=Path,
        required=False,
        help="Path to source file which contains paths to audio one path per line. "
        "Number of lines in `--audio_file` has to be equal to number of lines in `--labels` file",
    )
    parser.add_argument(
        "--use_audio",
        required=False,
        action="store_true",
        help="If set to `True` script creates lexical audio dataset which can be used with `PunctuationCapitalizationLexicalAudioModel`.",
    )
    parser.add_argument(
        "--sample_rate",
        type=int,
        required=False,
        help="Target sample rate of audios. Can be used for downsampling or upsampling.",
    )
    parser.add_argument(
        "--labels",
        "-L",
        type=Path,
        required=True,
        help="Path to file with labels in the format described here "
        "https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#"
        "nemo-data-format . Number of lines in `--labels` file has to be equal to the number of lines in `--text` "
        "file.",
    )
    parser.add_argument(
        "--output_dir",
        "-o",
        type=Path,
        required=True,
        help="Path to directory where .tar files, metadata file, label id files are stored.",
    )
    parser.add_argument(
        "--max_seq_length",
        "-s",
        type=int,
        default=512,
        help="Maximum number of subtokens in an input sequence. A source sequence which contain too many subtokens are "
        "clipped to `--max_seq_length - 2` subtokens and then [CLS] token is prepended to the clipped sequence and "
        "[SEP] token is appended to the clipped sequence. The clipping is performed via removal of subtokens in the "
        "end of a source sequence.",
    )
    parser.add_argument(
        "--tokens_in_batch",
        "-b",
        type=int,
        default=15000,
        help="Maximum number of tokens in a batch including [CLS], [SEP], [UNK], and [PAD] tokens. Before packing into "
        "batches source sequences are sorted by number of tokens in order to reduce number of pad tokens. So the "
        "number of sequences in a batch may be different.",
    )
    parser.add_argument(
        "--lines_per_dataset_fragment",
        type=int,
        default=10 ** 6,
        help="A number of lines processed by one worker during creation of tarred dataset. A worker tokenizes "
        "`--lines_per_dataset_fragment` lines and keeps in RAM tokenized text labels before packing them into "
        "batches. Reducing `--lines_per_dataset_fragment` leads to reducing of the amount of memory required by this "
        "script.",
    )
    parser.add_argument(
        "--num_batches_per_tarfile",
        type=int,
        default=1000,
        help="A number of batches saved in a tar file. If you increase `--num_batches_per_tarfile`, then there will "
        "be less tar files in the dataset. There cannot be less then `--num_batches_per_tarfile` batches in a tar "
        "file, and all excess batches are removed. Maximum number of discarded batches is "
        "`--num_batches_per_tarfile - 1`.",
    )
    parser.add_argument(
        "--tokenizer_name",
        "-T",
        default="bert-base-uncased",
        help="Name of the tokenizer used for tokenization of source sequences. Possible options are 'sentencepiece', "
        "'word', 'char', HuggingFace tokenizers. For more options see function "
        "`nemo.collections.nlp.modules.common.get_tokenizer`. The tokenizer has to have properties `cls_id`, "
        "`pad_id`, `sep_id`, `unk_id`.",
    )
    parser.add_argument(
        "--tokenizer_model", "-m", type=Path, help="Path to tokenizer model required for 'sentencepiece' tokenizer."
    )
    parser.add_argument(
        "--vocab_file",
        "-v",
        type=Path,
        help="Path to vocabulary file which can be used in 'word', 'char', and HuggingFace tokenizers.",
    )
    parser.add_argument(
        "--merges_file", "-M", type=Path, help="Path to merges file which can be used in HuggingFace tokenizers."
    )
    parser.add_argument(
        "--special_token_names",
        "-n",
        nargs="+",
        help="Names of special tokens which may be passed to constructors of 'char', 'word', 'sentencepiece', and "
        "HuggingFace tokenizers.",
    )
    parser.add_argument(
        "--special_token_values",
        "-V",
        nargs="+",
        help="Values of special tokens which may be passed to constructors of 'char', 'word', 'sentencepiece', and "
        "HuggingFace tokenizers.",
    )
    parser.add_argument(
        "--use_fast_tokenizer", "-f", action="store_true", help="Whether to use fast HuggingFace tokenizer."
    )
    parser.add_argument(
        "--pad_label",
        "-P",
        default='O',
        help="Pad label both for punctuation and capitalization. This label is also is used for marking words which "
        "do not need punctuation and capitalization. It is also a neutral label used for marking words which do "
        "not require punctuation and capitalization.",
    )
    punct = parser.add_mutually_exclusive_group(required=False)
    punct.add_argument(
        "--punct_labels",
        "-p",
        nargs="+",
        help="All punctuation labels EXCEPT PAD LABEL. Punctuation labels are strings separated by spaces. "
        "Alternatively you can use parameter `--punct_label_vocab_file`. If none of parameters `--punct_labels` "
        "and `--punct_label_vocab_file` are provided, then punctuation label ids will be inferred from `--labels` "
        "file.",
    )
    punct.add_argument(
        "--punct_label_vocab_file",
        type=Path,
        help="A path to file with punctuation labels. These labels include pad label. Pad label has to be the first "
        "label in the file. Each label is written on separate line. Alternatively you can use `--punct_labels` "
        "parameter. If none of parameters `--punct_labels` and `--punct_label_vocab_file` are provided, then "
        "punctuation label ids will be inferred from `--labels` file.",
    )
    capit = parser.add_mutually_exclusive_group(required=False)
    capit.add_argument(
        "--capit_labels",
        "-c",
        nargs="+",
        help="All capitalization labels EXCEPT PAD LABEL. Capitalization labels are strings separated by spaces. "
        "Alternatively you can use parameter `--capit_label_vocab_file`. If none of parameters `--capit_labels` "
        "and `--capit_label_vocab_file` are provided, then capitalization label ids will be inferred from `--labels` "
        "file.",
    )
    capit.add_argument(
        "--capit_label_vocab_file",
        type=Path,
        help="A path to file with capitalization labels. These labels include pad label. Pad label has to be the "
        "first label in the file. Each label is written on separate line. Alternatively you can use `--capit_labels` "
        "parameter. If none of parameters `--capit_labels` and `--capit_label_vocab_file` are provided, then "
        "capitalization label ids will be inferred from `--labels` file.",
    )
    parser.add_argument(
        "--tar_file_prefix",
        "-x",
        default="punctuation_capitalization",
        help="A string from which tar file names start. It can contain only characters 'A-Z', 'a-z', '0-9', '_', '-', "
        "'.'.",
    )
    parser.add_argument(
        "--n_jobs",
        "-j",
        type=int,
        default=mp.cpu_count(),
        help="Number of workers for creating tarred dataset. By default it is equal to the number of CPU cores.",
    )
    args = parser.parse_args()
    for name in [
        "text",
        "labels",
        "output_dir",
        "tokenizer_model",
        "vocab_file",
        "merges_file",
        "punct_label_vocab_file",
        "capit_label_vocab_file",
    ]:
        if getattr(args, name) is not None:
            setattr(args, name, getattr(args, name).expanduser())
    if args.special_token_names is not None or args.special_token_values is not None:
        if args.special_token_names is None:
            parser.error(
                "If you provide parameter `--special_token_values` you have to provide parameter "
                "`--special_token_names`."
            )
        if args.special_token_values is None:
            parser.error(
                "If you provide parameter `--special_token_names` you have to provide parameter "
                "`--special_token_values`."
            )
        if len(args.special_token_names) != len(args.special_token_values):
            parser.error(
                f"Parameters `--special_token_names` and `--special_token_values` have to have equal number of values "
                f"whereas parameter `--special_token_names` has {len(args.special_token_names)} values and parameter "
                f"`--special_token_values` has {len(args.special_token_values)} values."
            )
        if len(set(args.special_token_names)) != len(args.special_token_names):
            for i in range(len(args.special_token_names) - 1):
                if args.special_token_names[i] in args.special_token_names[i + 1 :]:
                    parser.error(
                        f"Values of parameter `--special_token_names` has to be unique. Found duplicate value "
                        f"'{args.special_token_names[i]}'."
                    )
    if args.punct_labels is not None:
        check_labels_for_being_unique_before_building_label_ids(
            args.pad_label, args.punct_labels, '--pad_label', '--punct_labels', parser.error
        )
        check_labels_for_being_unique_before_building_label_ids(
            args.pad_label, args.capit_labels, '--pad_label', '--capit_labels', parser.error
        )
    check_tar_file_prefix(args.tar_file_prefix, parser.error, '--tar_file_prefix')
    return args


def main() -> None:
    args = get_args()
    if args.special_token_names is None:
        special_tokens = None
    else:
        special_tokens = dict(zip(args.special_token_names, args.special_token_values))

    if args.punct_labels is not None:
        punct_label_ids = build_label_ids_from_list_of_labels(args.pad_label, args.punct_labels)
    else:
        punct_label_ids = None

    if args.capit_labels is not None:
        capit_label_ids = build_label_ids_from_list_of_labels(args.pad_label, args.capit_labels)
    else:
        capit_label_ids = None

    create_tarred_dataset(
        args.text,
        args.labels,
        args.output_dir,
        args.max_seq_length,
        args.tokens_in_batch,
        args.lines_per_dataset_fragment,
        args.num_batches_per_tarfile,
        args.tokenizer_name,
        tokenizer_model=args.tokenizer_model,
        vocab_file=args.vocab_file,
        merges_file=args.merges_file,
        special_tokens=special_tokens,
        use_fast_tokenizer=args.use_fast_tokenizer,
        pad_label=args.pad_label,
        punct_label_ids=punct_label_ids,
        capit_label_ids=capit_label_ids,
        punct_label_vocab_file=args.punct_label_vocab_file,
        capit_label_vocab_file=args.capit_label_vocab_file,
        tar_file_prefix=args.tar_file_prefix,
        n_jobs=args.n_jobs,
        audio_file=args.audio_file,
        sample_rate=args.sample_rate,
        use_audio=args.use_audio,
    )


if __name__ == "__main__":
    main()