File size: 16,831 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import multiprocessing as mp
from pathlib import Path
from nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset import (
DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME,
DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME,
METADATA_CAPIT_LABEL_VOCAB_KEY,
METADATA_PUNCT_LABEL_VOCAB_KEY,
build_label_ids_from_list_of_labels,
check_labels_for_being_unique_before_building_label_ids,
check_tar_file_prefix,
create_tarred_dataset,
)
"""
A tarred dataset allows to train on large amounts without storing it all into memory simultaneously. In case of
punctuation and capitalization model, tarred dataset is a directory which contains metadata file, tar files with
batches, punct_label_vocab.csv and capit_label_vocab.csv files.
A metadata file is a JSON file with 4 fields: 'num_batches', 'tar_files', 'punct_label_vocab_file',
'capit_label_vocab_file'. 'num_batches' (int) is a total number of batches in tarred dataset. 'tar_files' is a list of
paths to tar files relative to directory containing the metadata file. 'punct_label_vocab_file' and
'capit_label_vocab_file' are paths to .csv files containing all unique punctuation and capitalization labels. Each
label in these files is written in a separate line. The first labels in both files are equal and serve for padding and
as neutral labels.
Every tar file contains objects written using `webdataset.TarWriter`. Each object is a dictionary with two items:
'__key__' and 'batch.pyd'. '__key__' is a name of a batch and 'batch.pyd' is a pickled dictionary which contains
'input_ids', 'subtokens_mask', 'punct_labels', 'capit_labels'. 'input_ids' is an array containing ids of source tokens,
'subtokens_mask' is a boolean array showing first tokens in words, 'punct_labels' and 'capit_labels' are arrays with
ids of labels. Metadata file should be passed to constructor of
`nemo.collections.nlp.data.token_classification.PunctuationCapitalizationTarredDataset` and the instance of
the class will handle iteration and constructing masks and token types for BERT model.
Example of usage:
python create_punctuation_capitalization_tarred_dataset.py \
--text <PATH/TO/TEXT/FILE> \
--labels <PATH/TO/LABELS/FILE> \
--output_dir <PATH/TO/OUTPUT/DIR> \
--lines_per_dataset_fragment 10000 \
--tokens_in_batch 8000 \
--num_batches_per_tarfile 5 \
--tokenizer_name char \
--vocab_file <PATH_TO_CHAR_TOKENIZER_VOCABULARY>
"""
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=f"A tarred dataset allows to train on large amounts without storing it all into memory "
f"simultaneously. In case of punctuation and capitalization model, tarred dataset is a directory which "
f"contains metadata file, tar files with batches, {DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME} and "
f"{DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME} files. A metadata file is a JSON file with 4 fields: 'num_batches', "
f"'tar_files', '{METADATA_PUNCT_LABEL_VOCAB_KEY}', '{METADATA_CAPIT_LABEL_VOCAB_KEY}'. 'num_batches' (int) is "
f"a total number of batches in tarred dataset. 'tar_files' is a list of paths to tar files relative "
f"to directory containing the metadata file. '{METADATA_PUNCT_LABEL_VOCAB_KEY}' and "
f"'{METADATA_CAPIT_LABEL_VOCAB_KEY}' are paths to .csv files containing all unique punctuation and "
f"capitalization labels. Each label in these files is written in a separate line. The first labels in both "
f"files are equal and serve for padding and as neutral labels. Every tar file contains objects written "
f"using `webdataset.TarWriter`. Each object is a dictionary with two items: '__key__' and 'batch.pyd'. "
f"'__key__' is a name of a batch and 'batch.pyd' is a pickled dictionary which contains 'input_ids', "
f"'subtokens_mask', 'punct_labels', 'capit_labels'. 'input_ids' is an array containing ids of source tokens, "
f"'subtokens_mask' is a boolean array showing first tokens in words, 'punct_labels' and 'capit_labels' are "
f"arrays with ids of labels. Metadata file should be passed to constructor of "
"`nemo.collections.nlp.data.token_classification.PunctuationCapitalizationTarredDataset` and the instance of "
"the class will handle iteration and constructing masks and token types for BERT model.",
)
parser.add_argument(
"--text",
"-t",
help="Path to source lowercased text without punctuation. Number of lines in `--text` file has to be equal "
"to number of lines in `--labels` file.",
type=Path,
required=True,
)
parser.add_argument(
"--audio_file",
type=Path,
required=False,
help="Path to source file which contains paths to audio one path per line. "
"Number of lines in `--audio_file` has to be equal to number of lines in `--labels` file",
)
parser.add_argument(
"--use_audio",
required=False,
action="store_true",
help="If set to `True` script creates lexical audio dataset which can be used with `PunctuationCapitalizationLexicalAudioModel`.",
)
parser.add_argument(
"--sample_rate",
type=int,
required=False,
help="Target sample rate of audios. Can be used for downsampling or upsampling.",
)
parser.add_argument(
"--labels",
"-L",
type=Path,
required=True,
help="Path to file with labels in the format described here "
"https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#"
"nemo-data-format . Number of lines in `--labels` file has to be equal to the number of lines in `--text` "
"file.",
)
parser.add_argument(
"--output_dir",
"-o",
type=Path,
required=True,
help="Path to directory where .tar files, metadata file, label id files are stored.",
)
parser.add_argument(
"--max_seq_length",
"-s",
type=int,
default=512,
help="Maximum number of subtokens in an input sequence. A source sequence which contain too many subtokens are "
"clipped to `--max_seq_length - 2` subtokens and then [CLS] token is prepended to the clipped sequence and "
"[SEP] token is appended to the clipped sequence. The clipping is performed via removal of subtokens in the "
"end of a source sequence.",
)
parser.add_argument(
"--tokens_in_batch",
"-b",
type=int,
default=15000,
help="Maximum number of tokens in a batch including [CLS], [SEP], [UNK], and [PAD] tokens. Before packing into "
"batches source sequences are sorted by number of tokens in order to reduce number of pad tokens. So the "
"number of sequences in a batch may be different.",
)
parser.add_argument(
"--lines_per_dataset_fragment",
type=int,
default=10 ** 6,
help="A number of lines processed by one worker during creation of tarred dataset. A worker tokenizes "
"`--lines_per_dataset_fragment` lines and keeps in RAM tokenized text labels before packing them into "
"batches. Reducing `--lines_per_dataset_fragment` leads to reducing of the amount of memory required by this "
"script.",
)
parser.add_argument(
"--num_batches_per_tarfile",
type=int,
default=1000,
help="A number of batches saved in a tar file. If you increase `--num_batches_per_tarfile`, then there will "
"be less tar files in the dataset. There cannot be less then `--num_batches_per_tarfile` batches in a tar "
"file, and all excess batches are removed. Maximum number of discarded batches is "
"`--num_batches_per_tarfile - 1`.",
)
parser.add_argument(
"--tokenizer_name",
"-T",
default="bert-base-uncased",
help="Name of the tokenizer used for tokenization of source sequences. Possible options are 'sentencepiece', "
"'word', 'char', HuggingFace tokenizers. For more options see function "
"`nemo.collections.nlp.modules.common.get_tokenizer`. The tokenizer has to have properties `cls_id`, "
"`pad_id`, `sep_id`, `unk_id`.",
)
parser.add_argument(
"--tokenizer_model", "-m", type=Path, help="Path to tokenizer model required for 'sentencepiece' tokenizer."
)
parser.add_argument(
"--vocab_file",
"-v",
type=Path,
help="Path to vocabulary file which can be used in 'word', 'char', and HuggingFace tokenizers.",
)
parser.add_argument(
"--merges_file", "-M", type=Path, help="Path to merges file which can be used in HuggingFace tokenizers."
)
parser.add_argument(
"--special_token_names",
"-n",
nargs="+",
help="Names of special tokens which may be passed to constructors of 'char', 'word', 'sentencepiece', and "
"HuggingFace tokenizers.",
)
parser.add_argument(
"--special_token_values",
"-V",
nargs="+",
help="Values of special tokens which may be passed to constructors of 'char', 'word', 'sentencepiece', and "
"HuggingFace tokenizers.",
)
parser.add_argument(
"--use_fast_tokenizer", "-f", action="store_true", help="Whether to use fast HuggingFace tokenizer."
)
parser.add_argument(
"--pad_label",
"-P",
default='O',
help="Pad label both for punctuation and capitalization. This label is also is used for marking words which "
"do not need punctuation and capitalization. It is also a neutral label used for marking words which do "
"not require punctuation and capitalization.",
)
punct = parser.add_mutually_exclusive_group(required=False)
punct.add_argument(
"--punct_labels",
"-p",
nargs="+",
help="All punctuation labels EXCEPT PAD LABEL. Punctuation labels are strings separated by spaces. "
"Alternatively you can use parameter `--punct_label_vocab_file`. If none of parameters `--punct_labels` "
"and `--punct_label_vocab_file` are provided, then punctuation label ids will be inferred from `--labels` "
"file.",
)
punct.add_argument(
"--punct_label_vocab_file",
type=Path,
help="A path to file with punctuation labels. These labels include pad label. Pad label has to be the first "
"label in the file. Each label is written on separate line. Alternatively you can use `--punct_labels` "
"parameter. If none of parameters `--punct_labels` and `--punct_label_vocab_file` are provided, then "
"punctuation label ids will be inferred from `--labels` file.",
)
capit = parser.add_mutually_exclusive_group(required=False)
capit.add_argument(
"--capit_labels",
"-c",
nargs="+",
help="All capitalization labels EXCEPT PAD LABEL. Capitalization labels are strings separated by spaces. "
"Alternatively you can use parameter `--capit_label_vocab_file`. If none of parameters `--capit_labels` "
"and `--capit_label_vocab_file` are provided, then capitalization label ids will be inferred from `--labels` "
"file.",
)
capit.add_argument(
"--capit_label_vocab_file",
type=Path,
help="A path to file with capitalization labels. These labels include pad label. Pad label has to be the "
"first label in the file. Each label is written on separate line. Alternatively you can use `--capit_labels` "
"parameter. If none of parameters `--capit_labels` and `--capit_label_vocab_file` are provided, then "
"capitalization label ids will be inferred from `--labels` file.",
)
parser.add_argument(
"--tar_file_prefix",
"-x",
default="punctuation_capitalization",
help="A string from which tar file names start. It can contain only characters 'A-Z', 'a-z', '0-9', '_', '-', "
"'.'.",
)
parser.add_argument(
"--n_jobs",
"-j",
type=int,
default=mp.cpu_count(),
help="Number of workers for creating tarred dataset. By default it is equal to the number of CPU cores.",
)
args = parser.parse_args()
for name in [
"text",
"labels",
"output_dir",
"tokenizer_model",
"vocab_file",
"merges_file",
"punct_label_vocab_file",
"capit_label_vocab_file",
]:
if getattr(args, name) is not None:
setattr(args, name, getattr(args, name).expanduser())
if args.special_token_names is not None or args.special_token_values is not None:
if args.special_token_names is None:
parser.error(
"If you provide parameter `--special_token_values` you have to provide parameter "
"`--special_token_names`."
)
if args.special_token_values is None:
parser.error(
"If you provide parameter `--special_token_names` you have to provide parameter "
"`--special_token_values`."
)
if len(args.special_token_names) != len(args.special_token_values):
parser.error(
f"Parameters `--special_token_names` and `--special_token_values` have to have equal number of values "
f"whereas parameter `--special_token_names` has {len(args.special_token_names)} values and parameter "
f"`--special_token_values` has {len(args.special_token_values)} values."
)
if len(set(args.special_token_names)) != len(args.special_token_names):
for i in range(len(args.special_token_names) - 1):
if args.special_token_names[i] in args.special_token_names[i + 1 :]:
parser.error(
f"Values of parameter `--special_token_names` has to be unique. Found duplicate value "
f"'{args.special_token_names[i]}'."
)
if args.punct_labels is not None:
check_labels_for_being_unique_before_building_label_ids(
args.pad_label, args.punct_labels, '--pad_label', '--punct_labels', parser.error
)
check_labels_for_being_unique_before_building_label_ids(
args.pad_label, args.capit_labels, '--pad_label', '--capit_labels', parser.error
)
check_tar_file_prefix(args.tar_file_prefix, parser.error, '--tar_file_prefix')
return args
def main() -> None:
args = get_args()
if args.special_token_names is None:
special_tokens = None
else:
special_tokens = dict(zip(args.special_token_names, args.special_token_values))
if args.punct_labels is not None:
punct_label_ids = build_label_ids_from_list_of_labels(args.pad_label, args.punct_labels)
else:
punct_label_ids = None
if args.capit_labels is not None:
capit_label_ids = build_label_ids_from_list_of_labels(args.pad_label, args.capit_labels)
else:
capit_label_ids = None
create_tarred_dataset(
args.text,
args.labels,
args.output_dir,
args.max_seq_length,
args.tokens_in_batch,
args.lines_per_dataset_fragment,
args.num_batches_per_tarfile,
args.tokenizer_name,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merges_file,
special_tokens=special_tokens,
use_fast_tokenizer=args.use_fast_tokenizer,
pad_label=args.pad_label,
punct_label_ids=punct_label_ids,
capit_label_ids=capit_label_ids,
punct_label_vocab_file=args.punct_label_vocab_file,
capit_label_vocab_file=args.capit_label_vocab_file,
tar_file_prefix=args.tar_file_prefix,
n_jobs=args.n_jobs,
audio_file=args.audio_file,
sample_rate=args.sample_rate,
use_audio=args.use_audio,
)
if __name__ == "__main__":
main()
|