File size: 7,704 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Task 1: Speech Command Recognition
## Preparing the dataset
Use the `process_speech_commands_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset.
```sh
python <NEMO_ROOT>/scripts/dataset_processing/process_speech_commands_data.py \
--data_root=<absolute path to where the data should be stored> \
--data_version=<either 1 or 2, indicating version of the dataset> \
--class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \
--rebalance \
--log
```
## Train to convergence
```sh
python speech_to_label.py \
# (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \
model.train_ds.manifest_filepath="<path to train manifest>" \
model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \
trainer.devices=2 \
trainer.accelerator="gpu" \
strategy="ddp" \
trainer.max_epochs=200 \
exp_manager.create_wandb_logger=True \
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-v1" \
exp_manager.wandb_logger_kwargs.project="MatchboxNet-v1" \
+trainer.precision=16 \
+trainer.amp_level=O1 # needed if using PyTorch < 1.6
```
# Task 2: Voice Activity Detection
## Preparing the dataset
Use the `process_vad_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset.
```sh
python process_vad_data.py \
--out_dir=<output path to where the generated manifest should be stored> \
--speech_data_root=<path where the speech data are stored> \
--background_data_root=<path where the background data are stored> \
--rebalance_method=<'under' or 'over' of 'fixed'> \
--log
(Optional --demo (for demonstration in tutorial). If you want to use your own background noise data, make sure to delete --demo)
```
## Train to convergence
```sh
python speech_to_label.py \
--config-path=<path to dir of configs e.g. "conf">
--config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \
model.train_ds.manifest_filepath="<path to train manifest>" \
model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \
trainer.devices=2 \
trainer.accelerator="gpu" \
strategy="ddp" \
trainer.max_epochs=200 \
exp_manager.create_wandb_logger=True \
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \
exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \
+trainer.precision=16 \
+trainer.amp_level=O1 # needed if using PyTorch < 1.6
```
# Task 3: Language Identification
## Preparing the dataset
Use the `filelist_to_manifest.py` script under <NEMO_ROOT>/scripts/speaker_tasks in order to prepare the dataset.
```
## Train to convergence
```sh
python speech_to_label.py \
--config-path=<path to dir of configs e.g. "../conf/lang_id">
--config-name=<name of config without .yaml e.g. "titanet_large"> \
model.train_ds.manifest_filepath="<path to train manifest>" \
model.validation_ds.manifest_filepath="<path to val manifest>" \
model.train_ds.augmentor.noise.manifest_path="<path to noise manifest>" \
model.train_ds.augmentor.impulse.manifest_path="<path to impulse manifest>" \
model.decoder.num_classes=<num of languages> \
trainer.devices=2 \
trainer.max_epochs=40 \
exp_manager.create_wandb_logger=True \
exp_manager.wandb_logger_kwargs.name="titanet" \
exp_manager.wandb_logger_kwargs.project="langid" \
+exp_manager.checkpoint_callback_params.monitor="val_acc_macro" \
+exp_manager.checkpoint_callback_params.mode="max" \
+trainer.precision=16 \
```
# Optional: Use tarred dataset to speed up data loading. Apply to both tasks.
## Prepare tarred dataset.
Prepare ONE manifest that contains all training data you would like to include. Validation should use non-tarred dataset.
Note that it's possible that tarred datasets impacts validation scores because it drop values in order to have same amount of files per tarfile;
Scores might be off since some data is missing.
Use the `convert_to_tarred_audio_dataset.py` script under <NEMO_ROOT>/scripts/speech_recognition in order to prepare tarred audio dataset.
For details, please see TarredAudioToClassificationLabelDataset in <NEMO_ROOT>/nemo/collections/asr/data/audio_to_label.py
python speech_to_label.py \
--config-path=<path to dir of configs e.g. "conf">
--config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \
model.train_ds.manifest_filepath=<path to train tarred_audio_manifest.json> \
model.train_ds.is_tarred=True \
model.train_ds.tarred_audio_filepaths=<path to train tarred audio dataset e.g. audio_{0..2}.tar> \
+model.train_ds.num_worker=<num_shards used generating tarred dataset> \
model.validation_ds.manifest_filepath=<path to validation audio_manifest.json>\
trainer.devices=2 \
trainer.accelerator="gpu" \
strategy="ddp" \ \
trainer.max_epochs=200 \
exp_manager.create_wandb_logger=True \
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \
exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \
+trainer.precision=16 \
+trainer.amp_level=O1 # needed if using PyTorch < 1.6
# Fine-tune a model
For documentation on fine-tuning this model, please visit -
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations
# Pretrained Models
For documentation on existing pretrained models, please visit -
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/results.html#
"""
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf
from nemo.collections.asr.models import EncDecClassificationModel, EncDecSpeakerLabelModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager
@hydra_runner(config_path="../conf/matchboxnet", config_name="matchboxnet_3x1x64_v1")
def main(cfg):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
trainer = pl.Trainer(**cfg.trainer)
exp_manager(trainer, cfg.get("exp_manager", None))
if 'titanet' in cfg.name.lower():
model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer)
else:
model = EncDecClassificationModel(cfg=cfg.model, trainer=trainer)
# Initialize the weights of the model from another model, if provided via config
model.maybe_init_from_pretrained_checkpoint(cfg)
trainer.fit(model)
torch.distributed.destroy_process_group()
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None:
if trainer.is_global_zero:
trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy)
if model.prepare_test(trainer):
trainer.test(model)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|