File size: 7,704 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
# Task 1: Speech Command Recognition

## Preparing the dataset
Use the `process_speech_commands_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset.

```sh
python <NEMO_ROOT>/scripts/dataset_processing/process_speech_commands_data.py \
    --data_root=<absolute path to where the data should be stored> \
    --data_version=<either 1 or 2, indicating version of the dataset> \
    --class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \
    --rebalance \
    --log
```

## Train to convergence
```sh
python speech_to_label.py \
    # (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \
    model.train_ds.manifest_filepath="<path to train manifest>" \
    model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \
    trainer.devices=2 \
    trainer.accelerator="gpu" \
    strategy="ddp" \
    trainer.max_epochs=200 \
    exp_manager.create_wandb_logger=True \
    exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-v1" \
    exp_manager.wandb_logger_kwargs.project="MatchboxNet-v1" \
    +trainer.precision=16 \
    +trainer.amp_level=O1  # needed if using PyTorch < 1.6
```


# Task 2: Voice Activity Detection

## Preparing the dataset
Use the `process_vad_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset.

```sh
python process_vad_data.py \
    --out_dir=<output path to where the generated manifest should be stored> \
    --speech_data_root=<path where the speech data are stored> \
    --background_data_root=<path where the background data are stored> \
    --rebalance_method=<'under' or 'over' of 'fixed'> \
    --log
    (Optional --demo (for demonstration in tutorial). If you want to use your own background noise data, make sure to delete --demo)
```

## Train to convergence
```sh
python speech_to_label.py \
    --config-path=<path to dir of configs e.g. "conf">
    --config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \
    model.train_ds.manifest_filepath="<path to train manifest>" \
    model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \
    trainer.devices=2 \
    trainer.accelerator="gpu" \
    strategy="ddp" \
    trainer.max_epochs=200 \
    exp_manager.create_wandb_logger=True \
    exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \
    exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \
    +trainer.precision=16 \
    +trainer.amp_level=O1  # needed if using PyTorch < 1.6
```

# Task 3: Language Identification

## Preparing the dataset
Use the `filelist_to_manifest.py` script under <NEMO_ROOT>/scripts/speaker_tasks in order to prepare the dataset.
```

## Train to convergence
```sh
python speech_to_label.py \
    --config-path=<path to dir of configs e.g. "../conf/lang_id">
    --config-name=<name of config without .yaml e.g. "titanet_large"> \
    model.train_ds.manifest_filepath="<path to train manifest>" \
    model.validation_ds.manifest_filepath="<path to val manifest>" \
    model.train_ds.augmentor.noise.manifest_path="<path to noise manifest>" \
    model.train_ds.augmentor.impulse.manifest_path="<path to impulse manifest>" \
    model.decoder.num_classes=<num of languages> \
    trainer.devices=2 \
    trainer.max_epochs=40 \
    exp_manager.create_wandb_logger=True \
    exp_manager.wandb_logger_kwargs.name="titanet" \
    exp_manager.wandb_logger_kwargs.project="langid" \
    +exp_manager.checkpoint_callback_params.monitor="val_acc_macro" \
    +exp_manager.checkpoint_callback_params.mode="max" \
    +trainer.precision=16 \
```


# Optional: Use tarred dataset to speed up data loading. Apply to both tasks.
## Prepare tarred dataset. 
   Prepare ONE manifest that contains all training data you would like to include. Validation should use non-tarred dataset.
   Note that it's possible that tarred datasets impacts validation scores because it drop values in order to have same amount of files per tarfile; 
   Scores might be off since some data is missing. 

   Use the `convert_to_tarred_audio_dataset.py` script under <NEMO_ROOT>/scripts/speech_recognition in order to prepare tarred audio dataset.
   For details, please see TarredAudioToClassificationLabelDataset in <NEMO_ROOT>/nemo/collections/asr/data/audio_to_label.py

python speech_to_label.py \
    --config-path=<path to dir of configs e.g. "conf">
    --config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \
    model.train_ds.manifest_filepath=<path to train tarred_audio_manifest.json> \
    model.train_ds.is_tarred=True \
    model.train_ds.tarred_audio_filepaths=<path to train tarred audio dataset e.g. audio_{0..2}.tar> \
    +model.train_ds.num_worker=<num_shards used generating tarred dataset> \
    model.validation_ds.manifest_filepath=<path to validation audio_manifest.json>\
    trainer.devices=2 \
    trainer.accelerator="gpu" \
    strategy="ddp" \ \
    trainer.max_epochs=200 \
    exp_manager.create_wandb_logger=True \
    exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \
    exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \
    +trainer.precision=16 \
    +trainer.amp_level=O1  # needed if using PyTorch < 1.6

# Fine-tune a model

For documentation on fine-tuning this model, please visit -
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations

# Pretrained Models

For documentation on existing pretrained models, please visit -
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/results.html#

"""
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf

from nemo.collections.asr.models import EncDecClassificationModel, EncDecSpeakerLabelModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager


@hydra_runner(config_path="../conf/matchboxnet", config_name="matchboxnet_3x1x64_v1")
def main(cfg):

    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')

    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))

    if 'titanet' in cfg.name.lower():
        model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer)
    else:
        model = EncDecClassificationModel(cfg=cfg.model, trainer=trainer)

    # Initialize the weights of the model from another model, if provided via config
    model.maybe_init_from_pretrained_checkpoint(cfg)
    trainer.fit(model)
    torch.distributed.destroy_process_group()

    if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None:
        if trainer.is_global_zero:
            trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy)
            if model.prepare_test(trainer):
                trainer.test(model)


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter