File size: 31,977 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
NeMo Models
===========
Basics
------
NeMo models contain everything needed to train and reproduce Conversational AI models:
- neural network architectures
- datasets/data loaders
- data preprocessing/postprocessing
- data augmentors
- optimizers and schedulers
- tokenizers
- language models
NeMo uses `Hydra <https://hydra.cc/>`_ for configuring both NeMo models and the PyTorch Lightning Trainer.
.. note:: Every NeMo model has an example configuration file and training script that can be found `here <https://github.com/NVIDIA/NeMo/tree/v1.0.2/examples>`_.
The end result of using NeMo, `Pytorch Lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_, and Hydra is that NeMo models all have the same look and feel and are also fully compatible with the PyTorch ecosystem.
Pretrained
----------
NeMo comes with many pretrained models for each of our collections: ASR, NLP, and TTS. Every pretrained NeMo model can be downloaded
and used with the ``from_pretrained()`` method.
As an example, we can instantiate QuartzNet with the following:
.. code-block:: Python
import nemo.collections.asr as nemo_asr
model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name="QuartzNet15x5Base-En")
To see all available pretrained models for a specific NeMo model, use the ``list_available_models()`` method.
.. code-block:: Python
nemo_asr.model.EncDecCTCModel.list_available_models()
For detailed information on the available pretrained models, refer to the collections documentation:
- :ref:`Automatic Speech Recognition (ASR)`
- :doc:`Natural Language Processing (NLP) <../nlp/models>`
- :doc:`Text-to-Speech Synthesis (TTS) <../tts/intro>`
Training
--------
NeMo leverages `PyTorch Lightning <https://www.pytorchlightning.ai/>`_ for model training. PyTorch Lightning lets NeMo decouple the
conversational AI code from the PyTorch training code. This means that NeMo users can focus on their domain (ASR, NLP, TTS) and
build complex AI applications without having to rewrite boiler plate code for PyTorch training.
When using PyTorch Lightning, NeMo users can automatically train with:
- multi-GPU/multi-node
- mixed precision
- model checkpointing
- logging
- early stopping
- and more
The two main aspects of the Lightning API are the `LightningModule <https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#>`_
and the `Trainer <https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html>`_.
PyTorch Lightning ``LightningModule``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every NeMo model is a ``LightningModule`` which is an ``nn.module``. This means that NeMo models are compatible with the PyTorch
ecosystem and can be plugged into existing PyTorch workflows.
Creating a NeMo model is similar to any other PyTorch workflow. We start by initializing our model architecture, then define the forward pass:
.. code-block:: python
class TextClassificationModel(NLPModel, Exportable):
...
def __init__(self, cfg: DictConfig, trainer: Trainer = None):
"""Initializes the BERTTextClassifier model."""
...
super().__init__(cfg=cfg, trainer=trainer)
# instantiate a BERT based encoder
self.bert_model = get_lm_model(
config_file=cfg.language_model.config_file,
config_dict=cfg.language_model.config,
vocab_file=cfg.tokenizer.vocab_file,
trainer=trainer,
cfg=cfg,
)
# instantiate the FFN for classification
self.classifier = SequenceClassifier(
hidden_size=self.bert_model.config.hidden_size,
num_classes=cfg.dataset.num_classes,
num_layers=cfg.classifier_head.num_output_layers,
activation='relu',
log_softmax=False,
dropout=cfg.classifier_head.fc_dropout,
use_transformer_init=True,
idx_conditioned_on=0,
)
.. code-block:: python
def forward(self, input_ids, token_type_ids, attention_mask):
"""
No special modification required for Lightning, define it as you normally would
in the `nn.Module` in vanilla PyTorch.
"""
hidden_states = self.bert_model(
input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
)
logits = self.classifier(hidden_states=hidden_states)
return logits
The ``LightningModule`` organizes PyTorch code so that across all NeMo models we have a similar look and feel.
For example, the training logic can be found in ``training_step``:
.. code-block:: python
def training_step(self, batch, batch_idx):
"""
Lightning calls this inside the training loop with the data from the training dataloader
passed in as `batch`.
"""
# forward pass
input_ids, input_type_ids, input_mask, labels = batch
logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask)
train_loss = self.loss(logits=logits, labels=labels)
lr = self._optimizer.param_groups[0]['lr']
self.log('train_loss', train_loss)
self.log('lr', lr, prog_bar=True)
return {
'loss': train_loss,
'lr': lr,
}
While validation logic can be found in ``validation_step``:
.. code-block:: python
def validation_step(self, batch, batch_idx):
"""
Lightning calls this inside the validation loop with the data from the validation dataloader
passed in as `batch`.
"""
if self.testing:
prefix = 'test'
else:
prefix = 'val'
input_ids, input_type_ids, input_mask, labels = batch
logits = self.forward(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask)
val_loss = self.loss(logits=logits, labels=labels)
preds = torch.argmax(logits, axis=-1)
tp, fn, fp, _ = self.classification_report(preds, labels)
return {'val_loss': val_loss, 'tp': tp, 'fn': fn, 'fp': fp}
PyTorch Lightning then handles all of the boiler plate code needed for training. Virtually any aspect of training can be customized
via PyTorch Lightning `hooks <https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#hooks>`_,
`Plugins <https://pytorch-lightning.readthedocs.io/en/stable/extensions/plugins.html>`_,
`callbacks <https://pytorch-lightning.readthedocs.io/en/stable/extensions/callbacks.html>`_, or by overriding `methods <https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#methods>`_.
For more domain-specific information, see:
- :ref:`Automatic Speech Recognition (ASR) <../asr/intro>`
- :ref:`Natural Language Processing (NLP) <../nlp/models>`
- :ref:`Text-to-Speech Synthesis (TTS) <../tts/intro>`
PyTorch Lightning Trainer
~~~~~~~~~~~~~~~~~~~~~~~~~
Since every NeMo model is a ``LightningModule``, we can automatically take advantage of the PyTorch Lightning ``Trainer``. Every NeMo
`example <https://github.com/NVIDIA/NeMo/tree/v1.0.2/examples>`_ training script uses the ``Trainer`` object to fit the model.
First, instantiate the model and trainer, then call ``.fit``:
.. code-block:: python
# We first instantiate the trainer based on the model configuration.
# See the model configuration documentation for details.
trainer = pl.Trainer(**cfg.trainer)
# Then pass the model configuration and trainer object into the NeMo model
model = TextClassificationModel(cfg.model, trainer=trainer)
# Now we can train with by calling .fit
trainer.fit(model)
# Or we can run the test loop on test data by calling
trainer.test(model=model)
All `trainer flags <https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html#trainer-flags>`_ can be set from from the
NeMo configuration.
Configuration
-------------
Hydra is an open-source Python framework that simplifies configuration for complex applications that must bring together many different
software libraries. Conversational AI model training is a great example of such an application. To train a conversational AI model, we
must be able to configure:
- neural network architectures
- training and optimization algorithms
- data pre/post processing
- data augmentation
- experiment logging/visualization
- model checkpointing
For an introduction to using Hydra, refer to the `Hydra Tutorials <https://hydra.cc/docs/tutorials/intro>`_.
With Hydra, we can configure everything needed for NeMo with three interfaces:
- Command Line (CLI)
- Configuration Files (YAML)
- Dataclasses (Python)
YAML
~~~~
NeMo provides YAML configuration files for all of our `example <https://github.com/NVIDIA/NeMo/tree/v1.0.2/examples>`_ training scripts.
YAML files make it easy to experiment with different model and training configurations.
Every NeMo example YAML has the same underlying configuration structure:
- trainer
- exp_manager
- model
Model configuration always contain ``train_ds``, ``validation_ds``, ``test_ds``, and ``optim``. Model architectures vary across
domains, therefore, refer to the ASR, NLP, and TTS Collections documentation for more detailed information on Model architecture configuration.
A NeMo configuration file should look similar to the following:
.. code-block:: yaml
# PyTorch Lightning Trainer configuration
# any argument of the Trainer object can be set here
trainer:
devices: 1 # number of gpus per node
accelerator: gpu
num_nodes: 1 # number of nodes
max_epochs: 10 # how many training epochs to run
val_check_interval: 1.0 # run validation after every epoch
# Experiment logging configuration
exp_manager:
exp_dir: /path/to/my/nemo/experiments
name: name_of_my_experiment
create_tensorboard_logger: True
create_wandb_logger: True
# Model configuration
# model network architecture, train/val/test datasets, data augmentation, and optimization
model:
train_ds:
manifest_filepath: /path/to/my/train/manifest.json
batch_size: 256
shuffle: True
validation_ds:
manifest_filepath: /path/to/my/validation/manifest.json
batch_size: 32
shuffle: False
test_ds:
manifest_filepath: /path/to/my/test/manifest.json
batch_size: 32
shuffle: False
optim:
name: novograd
lr: .01
betas: [0.8, 0.5]
weight_decay: 0.001
# network architecture can vary greatly depending on the domain
encoder:
...
decoder:
...
More specific details about configuration files for each collection can be found on the following pages:
:ref:`NeMo ASR Configuration Files`
CLI
~~~
With NeMo and Hydra, every aspect of model training can be modified from the command-line. This is extremely helpful for running lots
of experiments on compute clusters or for quickly testing parameters while developing.
All NeMo `examples <https://github.com/NVIDIA/NeMo/tree/v1.0.2/examples>`_ come with instructions on how to
run the training/inference script from the command-line (see `here <https://github.com/NVIDIA/NeMo/blob/4e9da75f021fe23c9f49404cd2e7da4597cb5879/examples/asr/asr_ctc/speech_to_text_ctc.py#L24>`_
for an example).
With Hydra, arguments are set using the ``=`` operator:
.. code-block:: bash
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/path/to/my/train/manifest.json \
model.validation_ds.manifest_filepath=/path/to/my/validation/manifest.json \
trainer.devices=2 \
trainer.accelerator='gpu' \
trainer.max_epochs=50
We can use the ``+`` operator to add arguments from the CLI:
.. code-block:: bash
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/path/to/my/train/manifest.json \
model.validation_ds.manifest_filepath=/path/to/my/validation/manifest.json \
trainer.devices=2 \
trainer.accelerator='gpu' \
trainer.max_epochs=50 \
+trainer.fast_dev_run=true
We can use the ``~`` operator to remove configurations:
.. code-block:: bash
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/path/to/my/train/manifest.json \
model.validation_ds.manifest_filepath=/path/to/my/validation/manifest.json \
~model.test_ds \
trainer.devices=2 \
trainer.accelerator='gpu' \
trainer.max_epochs=50 \
+trainer.fast_dev_run=true
We can specify configuration files using the ``--config-path`` and ``--config-name`` flags:
.. code-block:: bash
python examples/asr/asr_ctc/speech_to_text_ctc.py \
--config-path=conf/quartznet \
--config-name=quartznet_15x5 \
model.train_ds.manifest_filepath=/path/to/my/train/manifest.json \
model.validation_ds.manifest_filepath=/path/to/my/validation/manifest.json \
~model.test_ds \
trainer.devices=2 \
trainer.accelerator='gpu' \
trainer.max_epochs=50 \
+trainer.fast_dev_run=true
Dataclasses
~~~~~~~~~~~
Dataclasses allow NeMo to ship model configurations as part of the NeMo library and also enables pure Python configuration of NeMo models.
With Hydra, dataclasses can be used to create `structured configs <https://hydra.cc/docs/tutorials/structured_config/intro>`_ for the conversational AI application.
As an example, refer to the code block below for an *Attenion is All You Need* machine translation model. The model configuration can
be instantiated and modified like any Python `Dataclass <https://docs.python.org/3/library/dataclasses.html>`_.
.. code-block:: Python
from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import AAYNBaseConfig
cfg = AAYNBaseConfig()
# modify the number of layers in the encoder
cfg.encoder.num_layers = 8
# modify the training batch size
cfg.train_ds.tokens_in_batch = 8192
.. note:: Configuration with Hydra always has the following precedence CLI > YAML > Dataclass
.. _optimization-label:
Optimization
------------
Optimizers and learning rate schedules are configurable across all NeMo models and have their own namespace. Here is a sample YAML
configuration for a Novograd optimizer with Cosine Annealing learning rate schedule.
.. code-block:: yaml
optim:
name: novograd
lr: 0.01
# optimizer arguments
betas: [0.8, 0.25]
weight_decay: 0.001
# scheduler setup
sched:
name: CosineAnnealing
# Optional arguments
max_steps: -1 # computed at runtime or explicitly set here
monitor: val_loss
reduce_on_plateau: false
# scheduler config override
warmup_steps: 1000
warmup_ratio: null
min_lr: 1e-9:
.. note:: `NeMo Examples <https://github.com/NVIDIA/NeMo/tree/v1.0.2/examples>`_ has optimizer and scheduler configurations for every NeMo model.
Optimizers can be configured from the CLI as well:
.. code-block:: bash
python examples/asr/asr_ctc/speech_to_text_ctc.py \
--config-path=conf/quartznet \
--config-name=quartznet_15x5 \
...
# train with the adam optimizer
model.optim=adam \
# change the learning rate
model.optim.lr=.0004 \
# modify betas
model.optim.betas=[.8, .5]
.. _optimizers-label:
Optimizers
~~~~~~~~~~
``name`` corresponds to the lowercase name of the optimizer. To view a list of available optimizers, run:
.. code-block:: Python
from nemo.core.optim.optimizers import AVAILABLE_OPTIMIZERS
for name, opt in AVAILABLE_OPTIMIZERS.items():
print(f'name: {name}, opt: {opt}')
.. code-block:: bash
name: sgd opt: <class 'torch.optim.sgd.SGD'>
name: adam opt: <class 'torch.optim.adam.Adam'>
name: adamw opt: <class 'torch.optim.adamw.AdamW'>
name: adadelta opt: <class 'torch.optim.adadelta.Adadelta'>
name: adamax opt: <class 'torch.optim.adamax.Adamax'>
name: adagrad opt: <class 'torch.optim.adagrad.Adagrad'>
name: rmsprop opt: <class 'torch.optim.rmsprop.RMSprop'>
name: rprop opt: <class 'torch.optim.rprop.Rprop'>
name: novograd opt: <class 'nemo.core.optim.novograd.Novograd'>
Optimizer Params
~~~~~~~~~~~~~~~~
Optimizer params can vary between optimizers but the ``lr`` param is required for all optimizers. To see the available params for an
optimizer, we can look at its corresponding dataclass.
.. code-block:: python
from nemo.core.config.optimizers import NovogradParams
print(NovogradParams())
.. code-block:: bash
NovogradParams(lr='???', betas=(0.95, 0.98), eps=1e-08, weight_decay=0, grad_averaging=False, amsgrad=False, luc=False, luc_trust=0.001, luc_eps=1e-08)
``'???'`` indicates that the lr argument is required.
Register Optimizer
~~~~~~~~~~~~~~~~~~
To register a new optimizer to be used with NeMo, run:
.. autofunction:: nemo.core.optim.optimizers.register_optimizer
.. _learning-rate-schedulers-label:
Learning Rate Schedulers
~~~~~~~~~~~~~~~~~~~~~~~~
Learning rate schedulers can be optionally configured under the ``optim.sched`` namespace.
``name`` corresponds to the name of the learning rate schedule. To view a list of available schedulers, run:
.. code-block:: Python
from nemo.core.optim.lr_scheduler import AVAILABLE_SCHEDULERS
for name, opt in AVAILABLE_SCHEDULERS.items():
print(f'name: {name}, schedule: {opt}')
.. code-block:: bash
name: WarmupPolicy, schedule: <class 'nemo.core.optim.lr_scheduler.WarmupPolicy'>
name: WarmupHoldPolicy, schedule: <class 'nemo.core.optim.lr_scheduler.WarmupHoldPolicy'>
name: SquareAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.SquareAnnealing'>
name: CosineAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.CosineAnnealing'>
name: NoamAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.NoamAnnealing'>
name: WarmupAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.WarmupAnnealing'>
name: InverseSquareRootAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.InverseSquareRootAnnealing'>
name: SquareRootAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.SquareRootAnnealing'>
name: PolynomialDecayAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.PolynomialDecayAnnealing'>
name: PolynomialHoldDecayAnnealing, schedule: <class 'nemo.core.optim.lr_scheduler.PolynomialHoldDecayAnnealing'>
name: StepLR, schedule: <class 'torch.optim.lr_scheduler.StepLR'>
name: ExponentialLR, schedule: <class 'torch.optim.lr_scheduler.ExponentialLR'>
name: ReduceLROnPlateau, schedule: <class 'torch.optim.lr_scheduler.ReduceLROnPlateau'>
name: CyclicLR, schedule: <class 'torch.optim.lr_scheduler.CyclicLR'>
Scheduler Params
~~~~~~~~~~~~~~~~
To see the available params for a scheduler, we can look at its corresponding dataclass:
.. code-block:: Python
from nemo.core.config.schedulers import CosineAnnealingParams
print(CosineAnnealingParams())
.. code-block:: bash
CosineAnnealingParams(last_epoch=-1, warmup_steps=None, warmup_ratio=None, min_lr=0.0)
Register scheduler
~~~~~~~~~~~~~~~~~~
To register a new scheduler to be used with NeMo, run:
.. autofunction:: nemo.core.optim.lr_scheduler.register_scheduler
Save and Restore
----------------
NeMo models all come with ``.save_to`` and ``.restore_from`` methods.
Save
~~~~
To save a NeMo model, run:
.. code-block:: Python
model.save_to('/path/to/model.nemo')
Everything needed to use the trained model is packaged and saved in the ``.nemo`` file. For example, in the NLP domain, ``.nemo`` files
include the necessary tokenizer models and/or vocabulary files, etc.
.. note:: A ``.nemo`` file is simply an archive like any other ``.tar`` file.
Restore
~~~~~~~
To restore a NeMo model, run:
.. code-block:: Python
# Here, you should usually use the class of the model, or simply use ModelPT.restore_from() for simplicity.
model.restore_from('/path/to/model.nemo')
When using the PyTorch Lightning Trainer, a PyTorch Lightning checkpoint is created. These are mainly used within NeMo to auto-resume
training. Since NeMo models are ``LightningModules``, the PyTorch Lightning method ``load_from_checkpoint`` is available. Note that
``load_from_checkpoint`` won't necessarily work out-of-the-box for all models as some models require more artifacts than just the
checkpoint to be restored. For these models, the user will have to override ``load_from_checkpoint`` if they want to use it.
It's highly recommended to use ``restore_from`` to load NeMo models.
Restore with Modified Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes, there may be a need to modify the model (or it's sub-components) prior to restoring a model. A common case is when
the model's internal config must be updated due to various reasons (such as deprecation, newer versioning, support a new feature).
As long as the model has the same parameters as compared to the original config, the parameters can once again be restored safely.
In NeMo, as part of the .nemo file, the model's internal config will be preserved. This config is used during restoration, and
as shown below we can update this config prior to restoring the model.
.. code-block::
# When restoring a model, you should generally use the class of the model
# Obtain the config (as an OmegaConf object)
config = model_class.restore_from('/path/to/model.nemo', return_config=True)
# OR
config = model_class.from_pretrained('name_of_the_model', return_config=True)
# Modify the config as needed
config.x.y = z
# Restore the model from the updated config
model = model_class.restore_from('/path/to/model.nemo', override_config_path=config)
# OR
model = model_class.from_pretrained('name_of_the_model', override_config_path=config)
Register Artifacts
------------------
Conversational AI models can be complicated to restore as more information is needed than just the checkpoint weights in order to use the model.
NeMo models can save additional artifacts in the .nemo file by calling ``.register_artifact``.
When restoring NeMo models using ``.restore_from`` or ``.from_pretrained``, any artifacts that were registered will be available automatically.
As an example, consider an NLP model that requires a trained tokenizer model.
The tokenizer model file can be automatically added to the .nemo file with the following:
.. code-block:: python
self.encoder_tokenizer = get_nmt_tokenizer(
...
tokenizer_model=self.register_artifact(config_path='encoder_tokenizer.tokenizer_model',
src='/path/to/tokenizer.model',
verify_src_exists=True),
)
By default, ``.register_artifact`` will always return a path. If the model is being restored from a .nemo file,
then that path will be to the artifact in the .nemo file. Otherwise, ``.register_artifact`` will return the local path specified by the user.
``config_path`` is the artifact key. It usually corresponds to a model configuration but does not have to.
The model config that is packaged with the .nemo file will be updated according to the ``config_path`` key.
In the above example, the model config will have
.. code-block:: YAML
encoder_tokenizer:
...
tokenizer_model: nemo:4978b28103264263a03439aaa6560e5e_tokenizer.model
``src`` is the path to the artifact and the base-name of the path will be used when packaging the artifact in the .nemo file.
Each artifact will have a hash prepended to the basename of ``src`` in the .nemo file. This is to prevent collisions with basenames
base-names that are identical (say when there are two or more tokenizers, both called `tokenizer.model`).
The resulting .nemo file will then have the following file:
.. code-block:: bash
4978b28103264263a03439aaa6560e5e_tokenizer.model
If ``verify_src_exists`` is set to ``False``, then the artifact is optional. This means that ``.register_artifact`` will return ``None``
if the ``src`` cannot be found.
Nested NeMo Models
------------------
In some cases, it may be helpful to use NeMo models inside other NeMo models. For example, we can incorporate language models into ASR models to use in a decoding process to improve accuracy or use hybrid ASR-TTS models to generate audio from the text on the fly to train or finetune the ASR model.
There are 3 ways to instantiate child models inside parent models:
- use subconfig directly
- use the ``.nemo`` checkpoint path to load the child model
- use a pretrained NeMo model
To register a child model, use the ``register_nemo_submodule`` method of the parent model. This method will add the child model to a provided model attribute and, in the serialization process, will handle child artifacts correctly and store the child model config in the parent model config in ``config_field``.
.. code-block:: python
from nemo.core.classes import ModelPT
class ChildModel(ModelPT):
... # implement necessary methods
class ParentModel(ModelPT):
def __init__(self, cfg, trainer=None):
super().__init__(cfg=cfg, trainer=trainer)
# optionally annotate type for IDE autocompletion and type checking
self.child_model: Optional[ChildModel]
if cfg.get("child_model") is not None:
# load directly from config
# either if config provided initially, or automatically
# after model restoration
self.register_nemo_submodule(
name="child_model",
config_field="child_model",
model=ChildModel(self.cfg.child_model, trainer=trainer),
)
elif cfg.get('child_model_path') is not None:
# load from .nemo model checkpoint
# while saving, config will be automatically assigned/updated
# in cfg.child_model
self.register_nemo_submodule(
name="child_model",
config_field="child_model",
model=ChildModel.restore_from(self.cfg.child_model_path, trainer=trainer),
)
elif cfg.get('child_model_name') is not None:
# load from pretrained model
# while saving, config will be automatically assigned/updated
# in cfg.child_model
self.register_nemo_submodule(
name="child_model",
config_field="child_model",
model=ChildModel.from_pretrained(self.cfg.child_model_name, trainer=trainer),
)
else:
self.child_model = None
Neural Modules
==============
NeMo is built around Neural Modules, conceptual blocks of neural networks that take typed inputs and produce typed outputs. Such
modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations.
NeMo makes it easy to combine and re-use these building blocks while providing a level of semantic correctness checking via its neural
type system.
.. note:: *All Neural Modules inherit from ``torch.nn.Module`` and are therefore compatible with the PyTorch ecosystem.*
There are 3 types on Neural Modules:
- Regular modules
- Dataset/IterableDataset
- Losses
Every Neural Module in NeMo must inherit from `nemo.core.classes.module.NeuralModule` class.
.. autoclass:: nemo.core.classes.module.NeuralModule
Every Neural Modules inherits the ``nemo.core.classes.common.Typing`` interface and needs to define neural types for its inputs and outputs.
This is done by defining two properties: ``input_types`` and ``output_types``. Each property should return an ordered dictionary of
"port name"->"port neural type" pairs. Here is the example from :class:`~nemo.collections.asr.modules.ConvASREncoder` class:
.. code-block:: python
@property
def input_types(self):
return OrderedDict(
{
"audio_signal": NeuralType(('B', 'D', 'T'), SpectrogramType()),
"length": NeuralType(tuple('B'), LengthsType()),
}
)
@property
def output_types(self):
return OrderedDict(
{
"outputs": NeuralType(('B', 'D', 'T'), AcousticEncodedRepresentation()),
"encoded_lengths": NeuralType(tuple('B'), LengthsType()),
}
)
@typecheck()
def forward(self, audio_signal, length=None):
...
The code snippet above means that ``nemo.collections.asr.modules.conv_asr.ConvASREncoder`` expects two arguments:
* First one, named ``audio_signal`` of shape ``[batch, dimension, time]`` with elements representing spectrogram values.
* Second one, named ``length`` of shape ``[batch]`` with elements representing lengths of corresponding signals.
It also means that ``.forward(...)`` and ``__call__(...)`` methods each produce two outputs:
* First one, of shape ``[batch, dimension, time]`` but with elements representing encoded representation (``AcousticEncodedRepresentation`` class).
* Second one, of shape ``[batch]``, corresponding to their lengths.
.. tip:: It is a good practice to define types and add ``@typecheck()`` decorator to your ``.forward()`` method after your module is ready for use by others.
.. note:: The outputs of ``.forward(...)`` method will always be of type ``torch.Tensor`` or container of tensors and will work with any other Pytorch code. The type information is attached to every output tensor. If tensors without types is passed to your module, it will not fail, however the types will not be checked. Thus, it is recommended to define input/output types for all your modules, starting with data layers and add ``@typecheck()`` decorator to them.
.. note:: To temporarily disable typechecking, you can enclose your code in ```with typecheck.disable_checks():``` statement.
Dynamic Layer Freezing
----------------------
You can selectively freeze any modules inside a Nemo model by specifying a freezing schedule in the config yaml. Freezing stops any gradient updates
to that module, so that its weights are not changed for that step. This can be useful for combatting catastrophic forgetting, for example
when finetuning a large pretrained model on a small dataset.
The default approach is to freeze a module for the first N training steps, but you can also enable freezing for a specific range of steps,
for example, from step 20 - 100, or even activate freezing from some N until the end of training. You can also freeze a module for the entire training run.
Dynamic freezing is specified in training steps, not epochs.
To enable freezing, add the following to your config:
.. code-block:: yaml
model:
...
freeze_updates:
enabled: true # set to false if you want to disable freezing
modules: # list all of the modules you want to have freezing logic for
encoder: 200 # module will be frozen for the first 200 training steps
decoder: [50, -1] # module will be frozen at step 50 and will remain frozen until training ends
joint: [10, 100] # module will be frozen between step 10 and step 100 (step >= 10 and step <= 100)
transcoder: -1 # module will be frozen for the entire training run
|