|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cardiffnlp/twitter-roberta-large-hate-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: twitter-roberta-large-hate-latest-offensive-eval-kn |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-roberta-large-hate-latest-offensive-eval-kn |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8543 |
|
- Accuracy: 0.7391 |
|
- Precision: 0.4215 |
|
- Recall: 0.3968 |
|
- F1: 0.4020 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.9082 | 0.9968 | 157 | 0.8529 | 0.7286 | 0.3746 | 0.3354 | 0.3312 | |
|
| 0.7593 | 2.0 | 315 | 0.7818 | 0.7393 | 0.5160 | 0.3778 | 0.3767 | |
|
| 0.7264 | 2.9968 | 472 | 0.7640 | 0.7464 | 0.4450 | 0.3812 | 0.3861 | |
|
| 0.6998 | 4.0 | 630 | 0.7941 | 0.7464 | 0.4461 | 0.4106 | 0.4218 | |
|
| 0.5066 | 4.9968 | 787 | 0.8636 | 0.7518 | 0.4668 | 0.4156 | 0.4276 | |
|
| 0.5164 | 6.0 | 945 | 0.8747 | 0.7482 | 0.4391 | 0.4342 | 0.4342 | |
|
| 0.4098 | 6.9968 | 1102 | 0.9078 | 0.7446 | 0.4366 | 0.4324 | 0.4334 | |
|
| 0.3556 | 8.0 | 1260 | 0.9286 | 0.7393 | 0.4279 | 0.4304 | 0.4282 | |
|
| 0.3974 | 8.9968 | 1417 | 0.9444 | 0.7446 | 0.4434 | 0.4406 | 0.4411 | |
|
| 0.318 | 9.9683 | 1570 | 0.9597 | 0.7411 | 0.4352 | 0.4370 | 0.4352 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|