callmesan's picture
End of training
e5f113a verified
metadata
library_name: transformers
license: mit
base_model: cardiffnlp/twitter-roberta-large-hate-latest
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: twitter-roberta-large-hate-latest-offensive-eval-kn
    results: []

twitter-roberta-large-hate-latest-offensive-eval-kn

This model is a fine-tuned version of cardiffnlp/twitter-roberta-large-hate-latest on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8543
  • Accuracy: 0.7391
  • Precision: 0.4215
  • Recall: 0.3968
  • F1: 0.4020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9082 0.9968 157 0.8529 0.7286 0.3746 0.3354 0.3312
0.7593 2.0 315 0.7818 0.7393 0.5160 0.3778 0.3767
0.7264 2.9968 472 0.7640 0.7464 0.4450 0.3812 0.3861
0.6998 4.0 630 0.7941 0.7464 0.4461 0.4106 0.4218
0.5066 4.9968 787 0.8636 0.7518 0.4668 0.4156 0.4276
0.5164 6.0 945 0.8747 0.7482 0.4391 0.4342 0.4342
0.4098 6.9968 1102 0.9078 0.7446 0.4366 0.4324 0.4334
0.3556 8.0 1260 0.9286 0.7393 0.4279 0.4304 0.4282
0.3974 8.9968 1417 0.9444 0.7446 0.4434 0.4406 0.4411
0.318 9.9683 1570 0.9597 0.7411 0.4352 0.4370 0.4352

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0