|
--- |
|
library_name: transformers |
|
license: cc-by-4.0 |
|
base_model: l3cube-pune/indic-sentence-bert-nli |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-sentence-bert-nli-hate-mr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-sentence-bert-nli-hate-mr |
|
|
|
This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1222 |
|
- Accuracy: 0.9732 |
|
- Precision: 0.9733 |
|
- Recall: 0.9732 |
|
- F1: 0.9732 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6323 | 1.0 | 61 | 0.6216 | 0.6819 | 0.6951 | 0.6816 | 0.6762 | |
|
| 0.6538 | 2.0 | 122 | 0.6064 | 0.6843 | 0.7260 | 0.6849 | 0.6695 | |
|
| 0.478 | 3.0 | 183 | 0.6003 | 0.7060 | 0.7076 | 0.7059 | 0.7054 | |
|
| 0.3915 | 4.0 | 244 | 0.5929 | 0.7373 | 0.748 | 0.7376 | 0.7346 | |
|
| 0.3288 | 5.0 | 305 | 0.6091 | 0.7470 | 0.7560 | 0.7472 | 0.7448 | |
|
| 0.2425 | 6.0 | 366 | 0.6779 | 0.7301 | 0.7344 | 0.7300 | 0.7288 | |
|
| 0.1878 | 7.0 | 427 | 0.6804 | 0.7422 | 0.7423 | 0.7422 | 0.7421 | |
|
| 0.1156 | 8.0 | 488 | 0.7229 | 0.7614 | 0.7616 | 0.7615 | 0.7614 | |
|
| 0.1454 | 9.0 | 549 | 0.8009 | 0.7494 | 0.7528 | 0.7493 | 0.7485 | |
|
| 0.1152 | 10.0 | 610 | 0.8109 | 0.7566 | 0.7571 | 0.7566 | 0.7565 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|