callmesan's picture
End of training
03257e5 verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: l3cube-pune/indic-sentence-bert-nli
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: indic-sentence-bert-nli-hate-mr
    results: []

indic-sentence-bert-nli-hate-mr

This model is a fine-tuned version of l3cube-pune/indic-sentence-bert-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1222
  • Accuracy: 0.9732
  • Precision: 0.9733
  • Recall: 0.9732
  • F1: 0.9732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6323 1.0 61 0.6216 0.6819 0.6951 0.6816 0.6762
0.6538 2.0 122 0.6064 0.6843 0.7260 0.6849 0.6695
0.478 3.0 183 0.6003 0.7060 0.7076 0.7059 0.7054
0.3915 4.0 244 0.5929 0.7373 0.748 0.7376 0.7346
0.3288 5.0 305 0.6091 0.7470 0.7560 0.7472 0.7448
0.2425 6.0 366 0.6779 0.7301 0.7344 0.7300 0.7288
0.1878 7.0 427 0.6804 0.7422 0.7423 0.7422 0.7421
0.1156 8.0 488 0.7229 0.7614 0.7616 0.7615 0.7614
0.1454 9.0 549 0.8009 0.7494 0.7528 0.7493 0.7485
0.1152 10.0 610 0.8109 0.7566 0.7571 0.7566 0.7565

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0