File size: 13,761 Bytes
12300c4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86bd5571c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86bd557250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86bd5572e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86bd557370>", "_build": "<function ActorCriticPolicy._build at 0x7f86bd557400>", "forward": "<function ActorCriticPolicy.forward at 0x7f86bd557490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f86bd557520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86bd5575b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86bd557640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86bd5576d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86bd557760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86bd5577f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f86c4414f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715950197576467189, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAFubwUoom6aH6nNmI3jzHuFQ67MnfGtQAAgD8AAIA/TUGLPdmGlz/jx1U+RTb2vvkF0j2ehfA8AAAAAAAAAADNLZU8OtBRPzJhfT2OPrC+zup+Pf3qf7wAAAAAAAAAAGYac7wJi1Y9e9tTvoBhNr7o1am9a4DjPAAAAAAAAAAAzfR5u/E9dj+tvyq95X7ZvjSVAj2xUDC9AAAAAAAAAACaWLW8wz18uip3+rl3v7Ay+4htu6doETkAAIA/AACAP00XBr2fVYW7bfI4PVJWDL7WiKq8tuElvwAAgD8AAIA/TXwwvQW/xruYXwe8raatPD4qJ71GFZE9AACAPwAAgD+aigI96qgaPiZpYb2UW2++eouXvHn2F7wAAAAAAAAAAM093rz7+KK8oKZ5PFxopzzKHRC+tRWCPQAAgD8AAIA/ZlxovMUvgjy+xuG9nPhWvn0+fr0DRB29AAAAAAAAAAAAcrc8brWHPf8ypjzQPza+8z9sPb1AnrwAAAAAAAAAAAAdoTze4rQ/+tsmP4/n4zvF+Yu8VQWZvQAAAAAAAAAAwG8wvkg14j5+fGI+XJ95vuSmIz5O3VW9AAAAAAAAAADNfiY918cSP3D7172+Xsa+Pb+BPH07yrwAAAAAAAAAAJo1nLzQpbk+spFIvY/oqr4mfSm9qlOCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH7hTXJ5miMAWyUTbYBjAF0lEdAl4ZuWnjyWnV9lChoBkdAb0AfxtpEhWgHTSQBaAhHQJeISPikwex1fZQoaAZHQHLecuFpPARoB00pAWgIR0CXiFvDxb0OdX2UKGgGR0By0Unb7CSBaAdNFwFoCEdAl4ifiPyTZHV9lChoBkdAcc976pHZsmgHTR4BaAhHQJeIr4qPOpt1fZQoaAZHQHNV7SiM5wRoB0v/aAhHQJeJSHXVbzN1fZQoaAZHQHL5xmTTvy9oB0v4aAhHQJeJv9R77bd1fZQoaAZHQHJfcLKFIupoB00XAWgIR0CXioWhRIjGdX2UKGgGR0Bta6Fj/dZaaAdNBwFoCEdAl4rmTs6aLHV9lChoBkdAczh9BKL88GgHTSQBaAhHQJeLDY7JW/91fZQoaAZHQHIO2NR3u/loB00QAWgIR0CXi/fozN2UdX2UKGgGR0BypBG7SRbKaAdNPgFoCEdAl4xxUR3/xXV9lChoBkdAbzH9Q40dimgHTQEBaAhHQJeMxJI1+Ap1fZQoaAZHQHFtwxJul41oB00WAWgIR0CXjYv2GqPwdX2UKGgGR0BuijH0btJGaAdL9GgIR0CXjapDNQj2dX2UKGgGR0BvS7FhoduHaAdL+GgIR0CXj4/hl18tdX2UKGgGR0Bwy3htLteEaAdNBgFoCEdAl4/vddmg8XV9lChoBkdAb1A5wwTM7mgHTQcBaAhHQJeQYTtb9qF1fZQoaAZHQHAQfdZaFEloB00PAWgIR0CXkJO938oAdX2UKGgGR0ByC6ngpBomaAdNAgFoCEdAl5FolpoK2XV9lChoBkdAcAcVXFLnLmgHTd8BaAhHQJeRcYQ8OkN1fZQoaAZHQGyXFwcYIjZoB0v8aAhHQJeSGQlruYx1fZQoaAZHQHIBXLvCuU5oB0v6aAhHQJeSbLB9Cu51fZQoaAZHQHDlVSOzY29oB00LAWgIR0CXkxCLuQZGdX2UKGgGR0ByxyHi3ocJaAdNVwFoCEdAl5NysjmjkHV9lChoBkdAb9cYiPhhpmgHS+loCEdAl5N+/pMYdnV9lChoBkdAcMxvcJtzjmgHTQoBaAhHQJeUvI4lyBF1fZQoaAZHQHDxQxagVXVoB00oAWgIR0CXlM5KvmozdX2UKGgGR0By/1xhlUZOaAdNDgFoCEdAl5WeH8CPqHV9lChoBkdAcCKtapxWDGgHTQ4BaAhHQJeVvFWGRFJ1fZQoaAZHQG/nTwlSjxloB00KAWgIR0CXl4iVjZtfdX2UKGgGR0BtRYcHWz4UaAdNCQFoCEdAl5fgRPGhmHV9lChoBkdAcdBtfXwsoWgHTRABaAhHQJeYt9Brvb51fZQoaAZHQHGIBPbfxc5oB00aAWgIR0CXmNmpEQXidX2UKGgGR0BxpndDYywfaAdNDAFoCEdAl5l7TQVsUXV9lChoBkdAbIrvGZNO/WgHTTMBaAhHQJeatxsEaEV1fZQoaAZHQHJBiXlbNbFoB00wAWgIR0CXm2rrgOz6dX2UKGgGR0BwDw91U2k0aAdNEAFoCEdAl5veTaCcw3V9lChoBkdAcBYxSYPXkGgHTSgBaAhHQJecNk1/DtR1fZQoaAZHQHAFOjh1klNoB0v0aAhHQJecflhgE2Z1fZQoaAZHQHNWvHcUM5RoB01QAWgIR0CXnL83uNPydX2UKGgGR0BwbQChew9raAdNJAFoCEdAl7BoZMtbtHV9lChoBkdAb7LER8MNMGgHTQcBaAhHQJewc4Otnwp1fZQoaAZHQHH/Ym5UcXFoB00uAWgIR0CXsj5sTFl1dX2UKGgGR0BxyI5jpcHGaAdNAQFoCEdAl7LslkYoAnV9lChoBkdAcuFTUAksz2gHS+doCEdAl7N5nYg7o3V9lChoBkdAchEROUMXrWgHTZcBaAhHQJeze26TW5J1fZQoaAZHQGO7uvUz9CNoB03oA2gIR0CXs+ZjhDPXdX2UKGgGR0ByqjMzMzMzaAdNKAFoCEdAl7Tki+tbLXV9lChoBkdAcCnnM+u/12gHTRABaAhHQJe15eKKpDN1fZQoaAZHQHJ3/qs2ehBoB00sAWgIR0CXtkuctoSMdX2UKGgGR0BuHwtOEdvLaAdL/WgIR0CXt3DkELYxdX2UKGgGR0BstCDM/yG0aAdL/WgIR0CXuLeKsMiKdX2UKGgGR0BwtZOEdvKmaAdNFAFoCEdAl7kg+6iCa3V9lChoBkdAcLOt16mfoWgHTVkBaAhHQJe5+ZDzAet1fZQoaAZHQHAFnww0waloB00+AWgIR0CXuisu3+dcdX2UKGgGR0BxqXMJQcghaAdNBwFoCEdAl7qFpXZGrnV9lChoBkdAcI5g0CRwImgHTRMBaAhHQJe66EWZZ0V1fZQoaAZHQHAe7Z39rGloB0vwaAhHQJe7I36yjYZ1fZQoaAZHQHKqNeMQ2/BoB01bAWgIR0CXu9r0aqCIdX2UKGgGR0Bw6y+10DEFaAdL8mgIR0CXu+9If8uSdX2UKGgGR0By1nrVvuPWaAdNEAFoCEdAl7xlk6Lfk3V9lChoBkdAcZQM6RyOrGgHTQkBaAhHQJe8hSpBHCp1fZQoaAZHQHJK35FgDzRoB00fAWgIR0CXvV7+DOC5dX2UKGgGR0BxLu0iQkonaAdL9WgIR0CXve9f1HvudX2UKGgGR0By7PChvitJaAdL/2gIR0CXvfm2sq8UdX2UKGgGR0BwWF0Rvm5laAdNRwFoCEdAl79kmx+rl3V9lChoBkdAciKaMaS9umgHTRgBaAhHQJe/7e9Ba9t1fZQoaAZHQHG6FndweeZoB0v3aAhHQJe/9wS8J2N1fZQoaAZHQG3dvCl7+kxoB00TAWgIR0CXwTG4ZuQ7dX2UKGgGR0BsVkpVjqfOaAdL+WgIR0CXwbFCLMs6dX2UKGgGR0BvRKYCyQgcaAdNEAFoCEdAl8ITbnHNo3V9lChoBkdAcjLzhxYJV2gHTR0BaAhHQJfCTcqOLix1fZQoaAZHQHHsSjYZl4FoB00AAWgIR0CXwlWIXTEzdX2UKGgGR0Bt7yMir1dxaAdNEgFoCEdAl8MZ7b+LnHV9lChoBkdAcC1jua4MF2gHTQ8BaAhHQJfDyFoL5RF1fZQoaAZHQHFcyxqwhW5oB00PAWgIR0CXw9580DU3dX2UKGgGR0BwgNAzHjp+aAdNFQFoCEdAl8SOKCQLeHV9lChoBkdAcx+ARChN/WgHTQsBaAhHQJfFdiLEUCd1fZQoaAZHQHEXLDl5nlJoB00wAWgIR0CXxZRNATqTdX2UKGgGR0BvDFoSL61taAdNCQFoCEdAl8YGZqmCRXV9lChoBkdAcCnqqfe1r2gHTQMBaAhHQJfHO+49X911fZQoaAZHQHAlz7/GVA1oB0v5aAhHQJfHhb+tKZl1fZQoaAZHQHKS2gSOBDpoB0v8aAhHQJfHlUOuq3p1fZQoaAZHQHLeT+717IFoB01yAWgIR0CXyVGrjo6kdX2UKGgGR0Bx1JB4Uvf1aAdNEgFoCEdAl8m0jkdWAHV9lChoBkdAcJKRLsa86GgHTQkBaAhHQJfJ8X7+DOF1fZQoaAZHQHF5ogq3EydoB00AAWgIR0CXykKnvUjLdX2UKGgGR0ByFmygPEsKaAdNGgFoCEdAl8rYoVmBfHV9lChoBkdAcY5cj7hvSGgHS+JoCEdAl8rkr08NhHV9lChoBkdAc7H7YTTOPmgHTRoBaAhHQJfLF3yI55t1fZQoaAZHQHGuJDE3sHBoB00MAWgIR0CXy3Qj2SMcdX2UKGgGR0BxpGUgSvkjaAdL6mgIR0CXy94mTkhidX2UKGgGR0BxZr7HhjvvaAdNFAFoCEdAl8xWP91loXV9lChoBkdARw2UW2w3YWgHS7xoCEdAl8zzQu27WnV9lChoBkdAcF1yTpxFRmgHTQABaAhHQJfNTMUypJh1fZQoaAZHQHF4HYL9deJoB0vkaAhHQJfOU0VJtix1fZQoaAZHQHApqUqx1PpoB00sAWgIR0CXzwvmHP/rdX2UKGgGR0BxrEWgvlEJaAdNTgFoCEdAl8+KLsKLKnV9lChoBkdAcSKS39aUzWgHS+1oCEdAl9BXEIgNgHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}