c72599's picture
update model card README.md
a7d278c
|
raw
history blame
2.35 kB
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.84
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-ls960-finetuned-gtzan
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5915
- Accuracy: 0.84
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9842 | 1.0 | 112 | 1.8316 | 0.3 |
| 1.5556 | 2.0 | 225 | 1.4607 | 0.51 |
| 1.1784 | 3.0 | 337 | 1.2548 | 0.52 |
| 0.8821 | 4.0 | 450 | 1.1416 | 0.61 |
| 0.9141 | 5.0 | 562 | 1.0491 | 0.64 |
| 0.7517 | 6.0 | 675 | 0.8565 | 0.73 |
| 0.7526 | 7.0 | 787 | 0.7474 | 0.78 |
| 0.3974 | 8.0 | 900 | 0.7273 | 0.78 |
| 0.444 | 9.0 | 1012 | 0.5932 | 0.84 |
| 0.6686 | 9.96 | 1120 | 0.5915 | 0.84 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.14.1
- Tokenizers 0.13.3