File size: 12,625 Bytes
d758c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import argparse
import ast
import itertools
import json
import os
import sys
import _jsonnet
import asdl
import astor
import torch
import tqdm
from seq2struct import beam_search
from seq2struct import datasets
from seq2struct import models
from seq2struct import optimizers
from seq2struct.utils import registry
from seq2struct.utils import saver as saver_mod
from seq2struct.models.spider import spider_beam_search
class Inferer:
def __init__(self, config):
self.config = config
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
torch.set_num_threads(1)
# self.device = torch.device('cpu')
# torch.set_num_threads(1)
# 0. Construct preprocessors
self.model_preproc = registry.instantiate(
registry.lookup('model', config['model']).Preproc,
config['model'])
self.model_preproc.load()
def load_model(self, logdir, step):
'''Load a model (identified by the config used for construction) and return it'''
# 1. Construct model
model = registry.construct('model', self.config['model'], preproc=self.model_preproc, device=self.device)
model.to(self.device)
model.eval()
model.visualize_flag = False
# 2. Restore its parameters
saver = saver_mod.Saver({"model": model})
last_step = saver.restore(logdir, step=step, map_location=self.device, item_keys=["model"])
if not last_step:
raise Exception('Attempting to infer on untrained model')
return model
def infer(self, model, output_path, args):
output = open(f"{output_path}.infer", 'w', encoding='utf8')
output_clean = open(f"{output_path}.json", 'w', encoding='utf8')
predicted_txt = open(f"{output_path}.txt", "w", encoding='utf8')
with torch.no_grad():
if args.mode == 'infer':
orig_data = registry.construct('dataset', self.config['data'][args.section])
preproc_data = self.model_preproc.dataset(args.section)
#print(f"args.section={args.section}")
if args.limit:
sliced_orig_data = itertools.islice(orig_data, args.limit)
sliced_preproc_data = itertools.islice(preproc_data, args.limit)
#print(f"args.limit preproc_data={preproc_data}\n\nargs.limit={args.limit}")
else:
sliced_orig_data = orig_data
sliced_preproc_data = preproc_data
#print(f"no args.limit preproc_data={preproc_data}\n\n")
print(f"Orig_data={len(orig_data)} Preproc_data={len(preproc_data)} Beam_size={args.beam_size} Use_heuristic={args.use_heuristic}")
assert len(orig_data) == len(preproc_data)
self._inner_infer(model, args.beam_size, args.output_history, sliced_orig_data, sliced_preproc_data, output, output_clean, predicted_txt,args.use_heuristic)
elif args.mode == 'debug':
data = self.model_preproc.dataset(args.section)
if args.limit:
sliced_data = itertools.islice(data, args.limit)
else:
sliced_data = data
self._debug(model, sliced_data, output)
elif args.mode == 'visualize_attention':
model.visualize_flag = True
model.decoder.visualize_flag = True
data = registry.construct('dataset', self.config['data'][args.section])
if args.limit:
sliced_data = itertools.islice(data, args.limit)
else:
sliced_data = data
self._visualize_attention(model, args.beam_size, args.output_history, sliced_data, args.res1, args.res2, args.res3, output)
output_clean.close()
predicted_txt.close()
def _infer_one(self, model, data_item, preproc_item, beam_size, output_history=False, use_heuristic=True):
if use_heuristic:
# TODO: from_cond should be true from non-bert model
#print(f"_infer_one\nmodel={model}\ndata_item={data_item}\npreproc_item={preproc_item}\nbeam_size={beam_size}");
#print(f"\npreproc_item={preproc_item}\n");
beams = spider_beam_search.beam_search_with_heuristics(
model, data_item, preproc_item, beam_size=beam_size, max_steps=1000, from_cond=False)
else:
beams = beam_search.beam_search(
model, data_item, preproc_item, beam_size=beam_size, max_steps=1000)
decoded = []
for beam in beams:
model_output, inferred_code = beam.inference_state.finalize()
decoded.append({
'orig_question': data_item.orig["question"],
'model_output': model_output,
'inferred_code': inferred_code,
'score': beam.score,
**({
'choice_history': beam.choice_history,
'score_history': beam.score_history,
} if output_history else {})})
return decoded
def _inner_infer(self, model, beam_size, output_history, sliced_orig_data, sliced_preproc_data, output, output_clean, predicted_txt, use_heuristic=False):
decoded_clean = []
for i, (orig_item, preproc_item) in enumerate(
tqdm.tqdm(zip(sliced_orig_data, sliced_preproc_data),
total=len(sliced_orig_data))):
if use_heuristic:
#TODO: from_cond should be true from non-bert model
#if i>=0 and i<3:
# print(f"\npreproc_item={preproc_item}\n");
# print(f"_inner_infer\nmodel={model}\ndata_item={orig_item}\npreproc_item={preproc_item}\nbeam_size={beam_size}");
beams = spider_beam_search.beam_search_with_heuristics(
model, orig_item, preproc_item, beam_size=beam_size, max_steps=1000, from_cond=False)
else:
beams = beam_search.beam_search(
model, orig_item, preproc_item, beam_size=beam_size, max_steps=1000)
decoded = []
for beam in beams:
model_output, inferred_code = beam.inference_state.finalize()
decoded.append({
'orig_question': orig_item.orig["question"],
'model_output': model_output,
'inferred_code': inferred_code,
'score': beam.score,
**({
'choice_history': beam.choice_history,
'score_history': beam.score_history,
} if output_history else {})})
output.write(
json.dumps({
'index': i,
'beams': decoded,
}, ensure_ascii=False) + '\n')
output.flush()
#output_clean.write(json.dumps(decoded_clean, ensure_ascii=False) + '\n')
#output_clean.flush()
decoded_clean.append ({'orig_question': orig_item.orig["question"],'predicted': inferred_code})
predicted_txt.write(f"{inferred_code}\n")
json.dump(decoded_clean, output_clean, indent=4, ensure_ascii=False)
def _debug(self, model, sliced_data, output):
for i, item in enumerate(tqdm.tqdm(sliced_data)):
(_, history), = model.compute_loss([item], debug=True)
output.write(
json.dumps({
'index': i,
'history': history,
}, ensure_ascii=False) + '\n')
output.flush()
def _visualize_attention(self, model, beam_size, output_history, sliced_data, res1file, res2file, res3file, output):
res1 = json.load(open(res1file, 'r', encoding='utf8'))
res1 = res1['per_item']
res2 = json.load(open(res2file, 'r', encoding='utf8'))
res2 = res2['per_item']
res3 = json.load(open(res3file, 'r', encoding='utf8'))
res3 = res3['per_item']
interest_cnt = 0
cnt = 0
for i, item in enumerate(tqdm.tqdm(sliced_data)):
if res1[i]['hardness'] != 'extra':
continue
cnt += 1
if (res1[i]['exact'] == 0) and (res2[i]['exact'] == 0) and (res3[i]['exact'] == 0):
continue
interest_cnt += 1
'''
print('sample index: ')
print(i)
beams = beam_search.beam_search(
model, item, beam_size=beam_size, max_steps=1000, visualize_flag=True)
entry = item.orig
print('ground truth SQL:')
print(entry['query_toks'])
print('prediction:')
print(res2[i])
decoded = []
for beam in beams:
model_output, inferred_code = beam.inference_state.finalize()
decoded.append({
'model_output': model_output,
'inferred_code': inferred_code,
'score': beam.score,
**({
'choice_history': beam.choice_history,
'score_history': beam.score_history,
} if output_history else {})})
output.write(
json.dumps({
'index': i,
'beams': decoded,
}) + '\n')
output.flush()
'''
print(interest_cnt * 1.0 / cnt)
def add_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', required=True)
parser.add_argument('--config', required=True)
parser.add_argument('--config-args')
parser.add_argument('--step', type=int)
parser.add_argument('--section', required=True)
parser.add_argument('--output', required=True)
parser.add_argument('--beam-size', required=True, type=int)
parser.add_argument('--output-history', action='store_true')
parser.add_argument('--limit', type=int)
parser.add_argument('--mode', default='infer', choices=['infer', 'debug', 'visualize_attention'])
parser.add_argument('--use_heuristic', action='store_true')
parser.add_argument('--res1', default='outputs/glove-sup-att-1h-0/outputs.json')
parser.add_argument('--res2', default='outputs/glove-sup-att-1h-1/outputs.json')
parser.add_argument('--res3', default='outputs/glove-sup-att-1h-2/outputs.json')
args = parser.parse_args()
return args
def main(args):
if args.config_args:
config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args}))
else:
config = json.loads(_jsonnet.evaluate_file(args.config))
if 'model_name' in config:
args.logdir = os.path.join(args.logdir, config['model_name'])
output_path = args.output.replace('__LOGDIR__', args.logdir)
output_path_teste = f"{output_path}.infer"
if os.path.exists(output_path_teste):
print('Output file {} already exists'.format(output_path_teste))
sys.exit(1)
inferer = Inferer(config)
model = inferer.load_model(args.logdir, args.step)
inferer.infer(model, output_path, args)
def main2(args, val_data_path):
if args.config_args:
config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args}))
else:
config = json.loads(_jsonnet.evaluate_file(args.config))
if 'model_name' in config:
args.logdir = os.path.join(args.logdir, config['model_name'])
output_path = args.output.replace('__LOGDIR__', args.logdir)
#Pode sobrepor o anterior
#if os.path.exists(output_path):
# print('Output file {} already exists'.format(output_path))
# sys.exit(1)
#use the command line validation data path
config['data']['val']['paths'][0] = val_data_path + "dev.json"
config['data']['val']['tables_paths'][0] = val_data_path + "tables.json"
print(f"Infer Dataset val(data val paths):{config['data']['val']['paths']}")
print(f"Infer Dataset val(data val tables_paths):{config['data']['val']['tables_paths']}\n")
inferer = Inferer(config)
model = inferer.load_model(args.logdir, args.step)
inferer.infer(model, output_path, args)
if __name__ == '__main__':
args = add_parser()
main(args)
|