c-alfano's picture
End of training
3d4c927 verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - orpo
  - generated_from_trainer
  - trl
  - orpo
  - alignment-handbook
  - generated_from_trainer
datasets:
  - silviasapora/low_quality_dpo7k
model-index:
  - name: gemma-7b-borpo-low-quality-v4
    results: []

gemma-7b-borpo-low-quality-v4

This model is a fine-tuned version of google/gemma-7b on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8577
  • Rewards/chosen: -0.5993
  • Rewards/rejected: -0.7602
  • Rewards/accuracies: 0.6143
  • Rewards/margins: 0.1610
  • Logps/rejected: -1.5205
  • Logps/chosen: -1.1986
  • Logits/rejected: 240.3907
  • Logits/chosen: 301.1215
  • Nll Loss: 1.5532
  • Log Odds Ratio: -0.6421
  • Log Odds Chosen: 0.4396

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.8227 1.0 84 1.9616 -0.6050 -0.6743 0.5 0.0693 -1.3486 -1.2099 257.8447 315.1940 1.6719 -0.6903 0.1646
1.4803 2.0 168 1.7681 -0.5462 -0.6508 0.5286 0.1046 -1.3017 -1.0924 274.3526 328.0207 1.4854 -0.6718 0.2561
0.9109 3.0 252 1.8577 -0.5993 -0.7602 0.6143 0.1610 -1.5205 -1.1986 240.3907 301.1215 1.5532 -0.6421 0.4396

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1