c-alfano's picture
End of training
475332f verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - orpo
  - generated_from_trainer
  - trl
  - orpo
  - generated_from_trainer
datasets:
  - silviasapora/low_quality_dpo7k
model-index:
  - name: gemma-7b-borpo-low-quality-v3
    results: []

gemma-7b-borpo-low-quality-v3

This model is a fine-tuned version of google/gemma-7b on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1095
  • Rewards/chosen: -0.6954
  • Rewards/rejected: -0.8346
  • Rewards/accuracies: 0.5571
  • Rewards/margins: 0.1392
  • Logps/rejected: -1.6692
  • Logps/chosen: -1.3909
  • Logits/rejected: 262.5518
  • Logits/chosen: 319.3429
  • Nll Loss: 1.7836
  • Log Odds Ratio: -0.6395
  • Log Odds Chosen: 0.4455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.9721 1.0 168 1.9526 -0.6072 -0.7027 0.5571 0.0955 -1.4054 -1.2144 282.1215 336.2867 1.6515 -0.6573 0.2649
1.3299 2.0 336 1.9015 -0.5986 -0.6805 0.5 0.0820 -1.3611 -1.1972 293.2820 345.2333 1.5933 -0.6792 0.2173
0.6266 3.0 504 2.1095 -0.6954 -0.8346 0.5571 0.1392 -1.6692 -1.3909 262.5518 319.3429 1.7836 -0.6395 0.4455

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1