metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4976
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0089 | 1.0 | 113 | 1.7881 | 0.55 |
1.2594 | 2.0 | 226 | 1.1487 | 0.67 |
0.9314 | 3.0 | 339 | 0.8613 | 0.74 |
0.8116 | 4.0 | 452 | 0.7516 | 0.75 |
0.4566 | 5.0 | 565 | 0.6358 | 0.81 |
0.3088 | 6.0 | 678 | 0.5891 | 0.8 |
0.348 | 7.0 | 791 | 0.4775 | 0.85 |
0.1084 | 8.0 | 904 | 0.4742 | 0.84 |
0.2117 | 9.0 | 1017 | 0.4684 | 0.89 |
0.1415 | 10.0 | 1130 | 0.4976 | 0.85 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3