File size: 1,889 Bytes
6199530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b31db
6199530
 
 
 
 
 
 
 
 
e2b31db
 
6199530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b31db
6199530
 
 
 
 
e2b31db
 
 
 
 
6199530
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      args: plus
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9180645161290323
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-clinc

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7719
- Accuracy: 0.9181

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 318  | 3.2882          | 0.7426   |
| 3.7861        | 2.0   | 636  | 1.8744          | 0.8381   |
| 3.7861        | 3.0   | 954  | 1.1567          | 0.8958   |
| 1.6922        | 4.0   | 1272 | 0.8569          | 0.9132   |
| 0.9055        | 5.0   | 1590 | 0.7719          | 0.9181   |


### Framework versions

- Transformers 4.16.2
- Pytorch 2.1.2+cu121
- Datasets 1.16.1
- Tokenizers 0.15.1