File size: 13,781 Bytes
89ea502 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7974034c8dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7974034c8e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7974034c8ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7974034c8f70>", "_build": "<function ActorCriticPolicy._build at 0x7974034c9000>", "forward": "<function ActorCriticPolicy.forward at 0x7974034c9090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7974034c9120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7974034c91b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7974034c9240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7974034c92d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7974034c9360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7974034c93f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797403461d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715962669868882656, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNV3L0uCtQ+kMh9PUT9eb4bBkO8QPBMPQAAAAAAAAAAc5pTPmzIjj8iCAk//yXHvje1nT7mlUA+AAAAAAAAAADNLEg6Kq/tPuaVXr0ODn2+dkn+u3OlVrwAAAAAAAAAALOmJL5Ia7A7K0RxtutkBTRfblu9RzeTNQAAgD8AAIA/QC6QPa8Sqz+mPZg+G4esvhu8Dz4uyFI9AAAAAAAAAADN2aW9mWqaPmaLqLzb1Jy+1G9lvVCXCbsAAAAAAAAAAGYMSL7YysE+T32CPcQIo746p3a9jrNyvQAAAAAAAAAApiKAvixVwD4ehDA+ANKGvsIWXL2w8eG8AAAAAAAAAAADxmG+qLPlvOY5FrxrTI+6h8lLPuPjWjsAAIA/AACAP80J2z1zgdE+SivRvVVrhr7jgz89nqrwOAAAAAAAAAAAwK1JPiFdurwRkrA8QLgru044Ir68JAW8AACAPwAAgD8aqDQ+l3w7Popwa76gFDK+xFpgvUr3h70AAAAAAAAAAE2OUL17Coq6h4SJOQYZRzQlZrG6dFyfuAAAAAAAAAAAbWE/Po1p/j7KGRC+L7mCvnOeqDzKnEw8AAAAAAAAAACagVI8+oy2P2Nrmz5jhQQ++nSvuiKvhj0AAAAAAAAAAFP3Uz6tpoM+usMPvikkir4P4dQ8k8XjvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/v+FUQ042MAWyUTegDjAF0lEdAntwQQxveg3V9lChoBkdAcBkfCQ9zO2gHTcgBaAhHQJ7cqxoqTbF1fZQoaAZHQHDX0d3jdYZoB03PAWgIR0Ce3xasZHd5dX2UKGgGR0BwzKrksBhhaAdNAwJoCEdAnt+utOmBOHV9lChoBkdAbzsgSOBDomgHTVMBaAhHQJ7ieMhouf51fZQoaAZHQECx003wTdtoB00DAWgIR0Ce40vX9R77dX2UKGgGR0BxNLiR4hUzaAdNpwFoCEdAnuNn8TBZZHV9lChoBkdAZg7qveP7vWgHTegDaAhHQJ7su/N7jT91fZQoaAZHQGtMcZ1mrbRoB01SAWgIR0Ce8ZnuRcNZdX2UKGgGR0BvPvPC2tuDaAdNfgFoCEdAnvTypaRp13V9lChoBkdAb3vfICEHuGgHTTIDaAhHQJ79bxEv0yx1fZQoaAZHQG/737k4m1JoB02wAmgIR0Ce/ZQ8OkLydX2UKGgGR0BuD4x1xKg7aAdNgQFoCEdAnv70XcgyM3V9lChoBkdAbMJu76Hj62gHTYgBaAhHQJ7/P/uLJjl1fZQoaAZHQGu2Z1/2Cd1oB029AmgIR0CfBJxwAEMcdX2UKGgGR0BikxaxHG0eaAdN6ANoCEdAnxu+5z5oG3V9lChoBkdAcJD1rZamoGgHTRADaAhHQJ8dkHQhOgx1fZQoaAZHQG+AUvXbudBoB03HAmgIR0CfHdOcUdq+dX2UKGgGR0Bx2cBxPwd9aAdNmgJoCEdAnx4cLronr3V9lChoBkdAcBAfbblA/2gHTcUBaAhHQJ8ew3Lmp2l1fZQoaAZHQG3h6dc0LtxoB02IA2gIR0CfIHPUaybAdX2UKGgGR0By4af/WDpUaAdN0wFoCEdAnyLuPq9oOHV9lChoBkdAXf+c6NlyzWgHTegDaAhHQJ8jSjN6gNB1fZQoaAZHQHD7hZyMkyFoB03jAmgIR0CfJtEa2nbZdX2UKGgGR0BvjXReC04SaAdN7gFoCEdAnyeJS75EdHV9lChoBkdAcHOxvvSc9WgHTV8BaAhHQJ8nt6mfoRt1fZQoaAZHQHEDYWYWtU5oB02NAWgIR0CfKIsA/9pAdX2UKGgGR0BxPP4yoGY8aAdNcQFoCEdAnyiaEeyRjnV9lChoBkdARNauU2UB4mgHTQ4BaAhHQJ8szXlKbrl1fZQoaAZHQGwGJhF3IMloB01XAWgIR0CfLlwK0D2bdX2UKGgGR0Bjn2a+evpyaAdN6ANoCEdAny/J+hGpdnV9lChoBkdAb3zXRw6ySmgHTTgCaAhHQJ8v/+0gKWt1fZQoaAZHQHCYcxsVLzxoB01eAWgIR0CfMAyQxN7CdX2UKGgGR0Bwbqw5eZ5SaAdNMAFoCEdAnzFq6STyKHV9lChoBkdAI7Qnx8UmD2gHS/loCEdAnzGWwqy4WnV9lChoBkdAcT2jHn2ZiWgHTTIBaAhHQJ8xsUVSGah1fZQoaAZHQHIzshLXcxloB02kAWgIR0CfMr6E8JUpdX2UKGgGR0BuaZfnfVI7aAdNKwFoCEdAnzQi44Ia+HV9lChoBkdAbtRPnjhky2gHTVABaAhHQJ81ZVAAyVR1fZQoaAZHQHEa/X5FgD1oB03tAWgIR0CfNWQ0XP7fdX2UKGgGR0Bt+XDFZPl/aAdNSAFoCEdAnzYZqM3qA3V9lChoBkdAcAaJqIrOJWgHTbACaAhHQJ85uHO8kD91fZQoaAZHQG2CC9IwudxoB00lAWgIR0CfOnBYV6/qdX2UKGgGR0BxpQbFS88LaAdNbwJoCEdAnz0Yr8R+SnV9lChoBkdAccd1rqMWGmgHTWIBaAhHQJ8/V+iJwbV1fZQoaAZHQG7XO3+dbxFoB02pAWgIR0CfP2bah6BzdX2UKGgGR0BwZzWRRuTBaAdNjwFoCEdAn0GyHmA9V3V9lChoBkdAcQBQYUFjeGgHTbABaAhHQJ9GsTdtVJd1fZQoaAZHQG2wDMNc4YJoB01vAWgIR0CfRrFCLMs6dX2UKGgGR0BwzLbUPQOXaAdNxwFoCEdAn0foW1twaXV9lChoBkdAPs0FfReC1GgHTQoBaAhHQJ9IfObAk9l1fZQoaAZHQG6libDuSfVoB00dAmgIR0CfSbS26TW5dX2UKGgGR0BvfsA/9pAVaAdNgQFoCEdAn0nMju8brHV9lChoBkdAb9QfTTfBN2gHTaMBaAhHQJ9KdZjhDPZ1fZQoaAZHQGynCngpBopoB03oAmgIR0CfSxLM9r44dX2UKGgGR0BwTeD7IkquaAdNJAFoCEdAn0xliWmgrnV9lChoBkdAciYdoFmnO2gHTVECaAhHQJ9j0NSZSel1fZQoaAZHQEG632mHgxdoB0vpaAhHQJ9j/ywwCbN1fZQoaAZHQE5qJqIrOJNoB00mAWgIR0CfZKq0dBBzdX2UKGgGR0BvbNM9KVY7aAdNZwFoCEdAn2cRoysS03V9lChoBkdAclQm/nGKh2gHTc4BaAhHQJ9nTIGQjlh1fZQoaAZHQHEkfDDTBqNoB00cAWgIR0CfajnP3SKFdX2UKGgGR0BI8LU9ZA6daAdNCAFoCEdAn2qQvlEJB3V9lChoBkdAcf9x95QgtGgHTVUBaAhHQJ9rBk/bCaZ1fZQoaAZHQDxWkO7QLNRoB0u9aAhHQJ9sN+WnjyZ1fZQoaAZHQHGTW2oegctoB00yAWgIR0CfbHysjmjkdX2UKGgGR0Byw3gAIY3vaAdNewFoCEdAn2yoiHIp6XV9lChoBkdAUJNAprk8zWgHS+VoCEdAn2zdovi97HV9lChoBkdAbxp5ckdFOWgHTWoBaAhHQJ9s9hAnlXB1fZQoaAZHQG8OA8jiXIFoB01eAWgIR0Cfbpj59E1EdX2UKGgGR0BsqFlTWGypaAdNQgFoCEdAn29vR7Z393V9lChoBkdAcPq9XLeQ+2gHTV4BaAhHQJ9xb31zySV1fZQoaAZHQG/ggc1fmcRoB02YA2gIR0CfcZpc5bQkdX2UKGgGR0Bs1OFtbcGkaAdNwQFoCEdAn3LkGVzIWHV9lChoBkdAQARaNdZ7omgHS9JoCEdAn3dcKgIyCXV9lChoBkdAbgcMSbpeNWgHTUkBaAhHQJ93tP2wmmd1fZQoaAZHQHCBRY3eenRoB01DAWgIR0Cfd8jkdV/+dX2UKGgGR0BfqJ9Vmz0IaAdN6ANoCEdAn3haKpDNQnV9lChoBkdAcb0uSOinHmgHTRkBaAhHQJ94dWHUMG51fZQoaAZHQHED07CBPKxoB00kAWgIR0CfeJ+6iCardX2UKGgGR0Bvx0eKbaysaAdNuAFoCEdAn3kQvQF9r3V9lChoBkdAcOEx2St/4WgHTUYBaAhHQJ95r8YQ8Ol1fZQoaAZHQHFq5j+aScNoB01eAWgIR0CfewH7P6bfdX2UKGgGR0BweAC8vmHQaAdNswFoCEdAn32+9zwMIHV9lChoBkdAb1tzT4L1EmgHTYgBaAhHQJ9/lwn6VMV1fZQoaAZHQHEUkbHZK4BoB01fAmgIR0Cff9FxXGOudX2UKGgGR0BvC4Bmwqy4aAdNbwFoCEdAn4DMHSnccnV9lChoBkdAcY3n/kvK2mgHTVABaAhHQJ+BHJHRTjx1fZQoaAZHQGw9S/sVtXRoB01SAWgIR0CfhwZvDP4VdX2UKGgGR0BykuMcZLqVaAdNTAFoCEdAn4fKKxcE/3V9lChoBkdAcSVej2zv7WgHTWgBaAhHQJ+H4lzEJjV1fZQoaAZHQHECR5gPVd5oB01UAWgIR0CfiQIV/MGHdX2UKGgGR0BxwL+sHSncaAdNaAFoCEdAn4k4ouwos3V9lChoBkdAcV1g/C66KGgHTXsBaAhHQJ+JZRjz7Mx1fZQoaAZHQG43lsYVIqdoB00wAWgIR0CfidRLK3d9dX2UKGgGR0BwV7qgRK6GaAdNeAFoCEdAn4nxw2l2vHV9lChoBkdAbeDFH8TBZmgHTQwCaAhHQJ+J71wo9cN1fZQoaAZHQHGnakIomXxoB00pAWgIR0CfjyoTfzjFdX2UKGgGR0BxGX9R77bdaAdNFQFoCEdAn4+zshPj43V9lChoBkdAcLN9hqj8DWgHTSEBaAhHQJ+QdV2icoZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |