code-millenials-34b / README.md
dittops's picture
Update README.md
07dde9a
|
raw
history blame
3.28 kB
metadata
license: llama2
metrics:
  - code_eval
library_name: transformers
tags:
  - code

Introducing Code Millenials 34B

Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks, aiming to revolutionize how systems understand and translate natural language instructions into code queries. Built on CodeLLaMa Python 34B, our model has been meticulously fine-tuned with a curated code generation instructions, ensuring quality and precision.

News πŸ”₯πŸ”₯πŸ”₯

  • [2024/01/03] We released Code Millenials 34B , which achieves the 80.48 pass@1 on the HumanEval Benchmarks.
  • [2024/01/02] We released Code Millenials 13B , which achieves the 76.21 pass@1 on the HumanEval Benchmarks.

HumanEval

CodeMillenials

For the millenial models, the eval script in the github repo is used for the above result.

Note: The humaneval values of other models are taken from the official repos of WizardCoder, DeepseekCoder, Gemini etc.

Models

Model Checkpoint HumanEval
Code Millenials 34B HF Link 80.48
Code Millenials 13B HF Link 76.21

πŸš€ Quick Start

Inference code using the pre-trained model from the Hugging Face model hub

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-34b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-34b")

template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Instruction: {instruction} ### Response:"""

instruction = <Your code instruction here>

prompt = template.format(instruction=instruction)

inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))

Training details

The model is trained of 16 A100 80GB for approximately 50hrs.

Hyperparameters Value
per_device_train_batch_size 16
gradient_accumulation_steps 1
epoch 3
steps 2157
learning_rate 2e-5
lr schedular type cosine
warmup ratio 0.1
optimizer adamw
fp16 True
GPU 16 A100 80GB

Important Note

  • Bias, Risks, and Limitations: Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.