File size: 1,790 Bytes
c4d59e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: article2KW_test1_barthez-orangesum-title_finetuned_for_summurization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# article2KW_test1_barthez-orangesum-title_finetuned_for_summurization

This model is a fine-tuned version of [moussaKam/barthez-orangesum-title](https://huggingface.co/moussaKam/barthez-orangesum-title) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2895
- Rouge1: 0.2048
- Rouge2: 0.0600
- Rougel: 0.2053
- Rougelsum: 0.2057

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.4512        | 1.0   | 3368  | 0.3433          | 0.2030 | 0.0642 | 0.2037 | 0.2033    |
| 0.3162        | 2.0   | 6736  | 0.3051          | 0.2109 | 0.0681 | 0.2110 | 0.2111    |
| 0.264         | 3.0   | 10104 | 0.2895          | 0.2048 | 0.0600 | 0.2053 | 0.2057    |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.11.0