File size: 5,508 Bytes
9ea6572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
ShapeNet Part Dataset (Unmaintained)

get processed shapenet part dataset
at "https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip"

Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)
Please cite our work if the code is helpful to you.
"""

import os
import json
import torch
import numpy as np
from copy import deepcopy
from torch.utils.data import Dataset

from pointcept.utils.logger import get_root_logger
from .builder import DATASETS
from .transform import Compose


@DATASETS.register_module()
class ShapeNetPartDataset(Dataset):
    def __init__(
        self,
        split="train",
        data_root="data/shapenetcore_partanno_segmentation_benchmark_v0_normal",
        transform=None,
        test_mode=False,
        test_cfg=None,
        loop=1,
    ):
        super(ShapeNetPartDataset, self).__init__()
        self.data_root = data_root
        self.split = split
        self.transform = Compose(transform)
        self.loop = (
            loop if not test_mode else 1
        )  # force make loop = 1 while in test mode
        self.test_mode = test_mode
        self.test_cfg = test_cfg if test_mode else None
        self.cache = {}

        # load categories file
        self.categories = []
        self.category2part = {
            "Airplane": [0, 1, 2, 3],
            "Bag": [4, 5],
            "Cap": [6, 7],
            "Car": [8, 9, 10, 11],
            "Chair": [12, 13, 14, 15],
            "Earphone": [16, 17, 18],
            "Guitar": [19, 20, 21],
            "Knife": [22, 23],
            "Lamp": [24, 25, 26, 27],
            "Laptop": [28, 29],
            "Motorbike": [30, 31, 32, 33, 34, 35],
            "Mug": [36, 37],
            "Pistol": [38, 39, 40],
            "Rocket": [41, 42, 43],
            "Skateboard": [44, 45, 46],
            "Table": [47, 48, 49],
        }
        self.token2category = {}
        with open(os.path.join(self.data_root, "synsetoffset2category.txt"), "r") as f:
            for line in f:
                ls = line.strip().split()
                self.token2category[ls[1]] = len(self.categories)
                self.categories.append(ls[0])

        if test_mode:
            self.post_transform = Compose(self.test_cfg.post_transform)
            self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform]

        # load data list
        if isinstance(self.split, str):
            self.data_list = self.load_data_list(self.split)
        elif isinstance(self.split, list):
            self.data_list = []
            for s in self.split:
                self.data_list += self.load_data_list(s)
        else:
            raise NotImplementedError

        logger = get_root_logger()
        logger.info(
            "Totally {} x {} samples in {} set.".format(
                len(self.data_idx), self.loop, split
            )
        )

    def load_data_list(self, split):
        split_file = os.path.join(
            self.data_root,
            "train_test_split",
            "shuffled_{}_file_list.json".format(split),
        )
        if not os.path.isfile(split_file):
            raise (RuntimeError("Split file do not exist: " + split_file + "\n"))
        with open(split_file, "r") as f:
            # drop "shape_data/" and append ".txt"
            data_list = [
                os.path.join(self.data_root, data[11:] + ".txt")
                for data in json.load(f)
            ]
        return data_list

    def prepare_train_data(self, idx):
        # load data
        data_idx = idx % len(self.data_list)
        if data_idx in self.cache:
            coord, norm, segment, cls_token = self.cache[data_idx]
        else:
            data = np.loadtxt(self.data_list[data_idx]).astype(np.float32)
            cls_token = self.token2category[
                os.path.basename(os.path.dirname(self.data_list[data_idx]))
            ]
            coord, norm, segment = (
                data[:, :3],
                data[:, 3:6],
                data[:, 6].astype(np.int32),
            )
            self.cache[data_idx] = (coord, norm, segment, cls_token)

        data_dict = dict(coord=coord, norm=norm, segment=segment, cls_token=cls_token)
        data_dict = self.transform(data_dict)
        return data_dict

    def prepare_test_data(self, idx):
        # load data
        data_idx = self.data_idx[idx % len(self.data_idx)]
        data = np.loadtxt(self.data_list[data_idx]).astype(np.float32)
        cls_token = self.token2category[
            os.path.basename(os.path.dirname(self.data_list[data_idx]))
        ]
        coord, norm, segment = data[:, :3], data[:, 3:6], data[:, 6].astype(np.int32)

        data_dict = dict(coord=coord, norm=norm, cls_token=cls_token)
        data_dict = self.transform(data_dict)
        data_dict_list = []
        for aug in self.aug_transform:
            data_dict_list.append(self.post_transform(aug(deepcopy(data_dict))))
        data_dict = dict(
            fragment_list=data_dict_list, segment=segment, name=self.get_data_name(idx)
        )
        return data_dict

    def get_data_name(self, idx):
        data_idx = self.data_idx[idx % len(self.data_idx)]
        return os.path.basename(self.data_list[data_idx]).split(".")[0]

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        else:
            return self.prepare_train_data(idx)

    def __len__(self):
        return len(self.data_idx) * self.loop