File size: 14,498 Bytes
eaf4800
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000012267BE2C10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000012267BE2CA0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000012267BE2D30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000012267BE2DC0>", "_build": "<function ActorCriticPolicy._build at 0x0000012267BE2E50>", "forward": "<function ActorCriticPolicy.forward at 0x0000012267BE2EE0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x0000012267BE2F70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000012267BE7040>", "_predict": "<function ActorCriticPolicy._predict at 0x0000012267BE70D0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000012267BE7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000012267BE71F0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000012267BE7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000012267BE3EC0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 36048576, "_total_timesteps": 36636592, "_num_timesteps_at_start": 35636592, "seed": null, "action_noise": null, "start_time": 1672121622606642600, "learning_rate": 5e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXkM6XFVzZXJzXGJyaWFuXC52aXJ0dWFsZW52c1x1bml0MS1oSm1sRTN0elxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Cjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAKCFTL4/U9Y+EquvO1QfSL+gmWC+1NiKPQAAAAAAAAAAoGRyvrheuD5Gq7Q+3q4Sv5oFH74fNZY+AAAAAAAAAABmJm+6e56DuivnJT1gZxMzzEq5ug1QdzMAAIA/AACAP5oW3z2PSW4/YNdqPmm8Qr80w2I+2R0+PQAAAAAAAAAAM7lzPUhD77p39Y+9KzSQPOV5XDsb83m9AACAPwAAgD/NzJU8qURwvDWjmT2+Vi08k1/ZvdfBED0AAIA/AACAP2ZDcj17dqW6MpblOjUd1DXh5Jy5EgcEugAAgD8AAIA/IBUCvkt89D28w64++UO+vh/j4zx7Jak9AAAAAAAAAABm1cQ8w/V4uhD90rejT3Wz7CIiO4i08DYAAIA/AACAPyDbG755q24/NmemvvqaP79SMXG+dZkCvgAAAAAAAAAA8/wGPji5qbuDJGy7Fa8iOUy8Ar3+BZo6AACAPwAAgD+zm/+90e25PTNGjD5gEM2+lIzLvZ7C8T0AAAAAAAAAAMC90r0K1Aa7vYqPPnQRZ77onmU8wrzQvgAAAAAAAIA/mjUBvTi55jz2Kvs9cUe5vmJ7DTyWFpU6AAAAAAAAAADTPDC+RYMTPh2Pij4mKQi/79NovqIuMz4AAAAAAAAAAABN9j2VfHg+Bp2QvtxgAb+P56E8WckhvgAAAAAAAAAA2mOovVyiDjul408+o8MQvpifdrz83oc/AACAPwAAAACzEDm+mXksP3mgg74gXTi/PIuivjyEp70AAAAAAAAAAGamwzmn1LQ/isUaPQ+gpT2pKd+5ajsMvAAAAAAAAAAAAJ3xPUQrWj4ao8a9Dt//vpYkUT2XDqO9AAAAAAAAAABjJnG+1xS8PkMMwT6WZRC/WPjhvc7CHj4AAAAAAAAAAAD1iz1cq1k9thVAvnDDo77O5QW+KP5XvQAAAAAAAAAAgFTDPQGytj/MTwk/vv8evs1txT3Kbqs+AAAAAAAAAADz2ok9cZsFu3Jjjb4iwwu9y15/PalLGT4AAAAAAACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.016562239195174078, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRrHc0ioecUCUhpRSlIwBbJRLk4wBdJRHQHYF+/k/8l51fZQoaAZoCWgPQwhL58OzBNxvQJSGlFKUaBVLqGgWR0B2CKwbEP1+dX2UKGgGaAloD0MICYm0jX+5ckCUhpRSlGgVS6NoFkdAdga8fV7QcHV9lChoBmgJaA9DCOccPBOaanFAlIaUUpRoFUusaBZHQHZfZbpu/Dd1fZQoaAZoCWgPQwhS8X9H1NVxQJSGlFKUaBVLs2gWR0B2XvkwN9YwdX2UKGgGaAloD0MIzGJi83EGcUCUhpRSlGgVS9poFkdAdl7gnMMZxnV9lChoBmgJaA9DCANckC1LqHJAlIaUUpRoFUuwaBZHQHZfMohIOH51fZQoaAZoCWgPQwitad5xCiNyQJSGlFKUaBVLs2gWR0B2YBPO6d1/dX2UKGgGaAloD0MIbtqM0xCecECUhpRSlGgVS7toFkdAdl9lu3trsXV9lChoBmgJaA9DCOilYmOeenJAlIaUUpRoFUugaBZHQHZh8Pvrnkl1fZQoaAZoCWgPQwgg8MAAwld0QJSGlFKUaBVLrmgWR0B2YIZ9/jKgdX2UKGgGaAloD0MINSpwsg2HcECUhpRSlGgVS6NoFkdAdmAoSL61s3V9lChoBmgJaA9DCFA25QqvFnRAlIaUUpRoFUvFaBZHQHZilNQCSzR1fZQoaAZoCWgPQwh8DixHyDNuQJSGlFKUaBVLlWgWR0B2YNZdOZb7dX2UKGgGaAloD0MIAP2+f7NWckCUhpRSlGgVS81oFkdAdmENqgyuZHV9lChoBmgJaA9DCNHLKJbbonFAlIaUUpRoFUu6aBZHQHZgrWqcVgx1fZQoaAZoCWgPQwhR9pZyfntwQJSGlFKUaBVLrmgWR0B2YNA6dUbUdX2UKGgGaAloD0MILsbAOs7Gc0CUhpRSlGgVS69oFkdAdmFbfgrH2nV9lChoBmgJaA9DCO22C811KW9AlIaUUpRoFUubaBZHQHZjmvjfek51fZQoaAZoCWgPQwiQ2sTJfTJxQJSGlFKUaBVLv2gWR0B2Yw2rGR3edX2UKGgGaAloD0MIMJ3WbdBWb0CUhpRSlGgVS5toFkdAdmSvddmg8XV9lChoBmgJaA9DCB+5Nek2gHNAlIaUUpRoFUvWaBZHQHZj/1L8Jld1fZQoaAZoCWgPQwjjGTT0DxdwQJSGlFKUaBVLpmgWR0B2YkTzundgdX2UKGgGaAloD0MI3GgAbwH+cECUhpRSlGgVS6hoFkdAdmNHAAQxvnV9lChoBmgJaA9DCM6mI4CbjXBAlIaUUpRoFUueaBZHQHZioyj59E11fZQoaAZoCWgPQwikbmdfuYxzQJSGlFKUaBVLwGgWR0B2ZGnQ6ZH/dX2UKGgGaAloD0MIVPzfEZWGcECUhpRSlGgVS5ZoFkdAdmL3I+4b0nV9lChoBmgJaA9DCOOMYU4QfHBAlIaUUpRoFUubaBZHQHZjw++ueSV1fZQoaAZoCWgPQwjJHMu7KqFxQJSGlFKUaBVLtmgWR0B2YzKHO8kEdX2UKGgGaAloD0MISDfCouIhc0CUhpRSlGgVS+JoFkdAdmRv9tMwlHV9lChoBmgJaA9DCOOJIM5DoHJAlIaUUpRoFUv9aBZHQHZjXYtg8bJ1fZQoaAZoCWgPQwhlUG1wYu5xQJSGlFKUaBVLqmgWR0B2Zg2n889wdX2UKGgGaAloD0MIRb3g01xHckCUhpRSlGgVS71oFkdAdmO9yLhrFnV9lChoBmgJaA9DCPXZAdfV53FAlIaUUpRoFUusaBZHQHZmzisGPgh1fZQoaAZoCWgPQwiinGhX4Q9yQJSGlFKUaBVLqGgWR0B2ZNRTCLuQdX2UKGgGaAloD0MI121Q++2TcUCUhpRSlGgVS79oFkdAdmTgm7aqTHV9lChoBmgJaA9DCLjoZKk1C3RAlIaUUpRoFUuyaBZHQHZlQumJm/Z1fZQoaAZoCWgPQwiUL2ghAa5xQJSGlFKUaBVLkGgWR0B2ZzirDIikdX2UKGgGaAloD0MIRRDn4YS3ckCUhpRSlGgVS8xoFkdAdmWSx7iQ1nV9lChoBmgJaA9DCFh06zW9G3NAlIaUUpRoFUuuaBZHQHZlubI91U51fZQoaAZoCWgPQwiKHvgYLJZyQJSGlFKUaBVLk2gWR0B2ZwFeOXE7dX2UKGgGaAloD0MIoWRyaieNckCUhpRSlGgVS8hoFkdAdmXOLR8c/HV9lChoBmgJaA9DCD3S4Lb29nJAlIaUUpRoFUvYaBZHQHZmejRD1Gt1fZQoaAZoCWgPQwjUZMbbylZwQJSGlFKUaBVLqmgWR0B2ZpLGrCFcdX2UKGgGaAloD0MIOLpKdxeDckCUhpRSlGgVS75oFkdAdmjMH8jzI3V9lChoBmgJaA9DCPeUnBP7jHJAlIaUUpRoFUvMaBZHQHZoOKwY+B91fZQoaAZoCWgPQwgVi98UVu9xQJSGlFKUaBVLzmgWR0B2aebAk9lmdX2UKGgGaAloD0MIGED4UCKccUCUhpRSlGgVS7VoFkdAdmkJkGzKLnV9lChoBmgJaA9DCDm4dMw50nJAlIaUUpRoFUvWaBZHQHZoE8zQ/ot1fZQoaAZoCWgPQwibWUsBKStwQJSGlFKUaBVLm2gWR0B2agV2zOX3dX2UKGgGaAloD0MI6SgHswnFcUCUhpRSlGgVS7toFkdAdmiOsT37DXV9lChoBmgJaA9DCMRDGD9NIHFAlIaUUpRoFUuuaBZHQHZo5r+Haex1fZQoaAZoCWgPQwgracU3VFhzQJSGlFKUaBVLx2gWR0B2aA+2VmjCdX2UKGgGaAloD0MI1v7O9ighc0CUhpRSlGgVS8FoFkdAdmgmPYFqz3V9lChoBmgJaA9DCNm1vd1SAHRAlIaUUpRoFUvgaBZHQHZpD7di2Dx1fZQoaAZoCWgPQwhRTN4As/RxQJSGlFKUaBVL32gWR0B2aW3qiXY2dX2UKGgGaAloD0MIXkpdMg7rcECUhpRSlGgVS7doFkdAdmvcghbGFXV9lChoBmgJaA9DCA6IEFcOJXBAlIaUUpRoFUufaBZHQHZrC5y2hIx1fZQoaAZoCWgPQwiFmEuqdkFzQJSGlFKUaBVLwmgWR0B2acPvrnkldX2UKGgGaAloD0MIKT4+Ift4ckCUhpRSlGgVS8BoFkdAdmomPYFqz3V9lChoBmgJaA9DCOwwJv39jXFAlIaUUpRoFUu/aBZHQHZqa94/u9h1fZQoaAZoCWgPQwh2i8BYn0dzQJSGlFKUaBVL2WgWR0B2bFdjXnQqdX2UKGgGaAloD0MIM4l6wSeccUCUhpRSlGgVS5hoFkdAdmylOGj9GnV9lChoBmgJaA9DCIF5yJQPdnJAlIaUUpRoFUvTaBZHQHZqQNwzch11fZQoaAZoCWgPQwgIBDqTthpxQJSGlFKUaBVLoGgWR0B2bEDdP+GXdX2UKGgGaAloD0MIyQVn8Hckc0CUhpRSlGgVS8VoFkdAdmq5sj3VTnV9lChoBmgJaA9DCFRx4xZzuHFAlIaUUpRoFUvAaBZHQHZqrWmP5pJ1fZQoaAZoCWgPQwhNhuP5TJ1xQJSGlFKUaBVLuWgWR0B2a0DdP+GXdX2UKGgGaAloD0MIYfw07k3vcECUhpRSlGgVS6toFkdAdm40lZ5iVnV9lChoBmgJaA9DCJ7PgHqzH3RAlIaUUpRoFUu9aBZHQHZtzB68g6l1fZQoaAZoCWgPQwj4ONOELTxzQJSGlFKUaBVL22gWR0B2a/9S/CZXdX2UKGgGaAloD0MI98391aM8cECUhpRSlGgVS6hoFkdAdm5A2ycCo3V9lChoBmgJaA9DCMkE/BpJkHFAlIaUUpRoFUupaBZHQHZtKErXlKd1fZQoaAZoCWgPQwjrqGqCqAx0QJSGlFKUaBVLrmgWR0B2bIBaLXMAdX2UKGgGaAloD0MI0Jm0qXpnc0CUhpRSlGgVS7NoFkdAdmyKl54W13V9lChoBmgJaA9DCFqAttXs43JAlIaUUpRoFUvNaBZHQHZttZvDP4V1fZQoaAZoCWgPQwhCdt7GJoJzQJSGlFKUaBVL4GgWR0B2bbmwJPZadX2UKGgGaAloD0MIgzXOpmOtcUCUhpRSlGgVS45oFkdAdm9v9tMwlHV9lChoBmgJaA9DCLGGi9zT2UJAlIaUUpRoFUtQaBZHQHZuCZF5Oah1fZQoaAZoCWgPQwhkA+liUyJyQJSGlFKUaBVLsGgWR0B2bYRzzVc2dX2UKGgGaAloD0MIXmbYKOtDO0CUhpRSlGgVS1loFkdAdnANqQA+6nV9lChoBmgJaA9DCPtA8s5hvnBAlIaUUpRoFUujaBZHQHZvKlUIcBF1fZQoaAZoCWgPQwj3rdaJC8dwQJSGlFKUaBVLpWgWR0B2bk8zQ/ordX2UKGgGaAloD0MIBHP0+D37ckCUhpRSlGgVS8xoFkdAdm6QumJm/XV9lChoBmgJaA9DCH2zzY3pmnBAlIaUUpRoFUuqaBZHQHZw8wg1WKd1fZQoaAZoCWgPQwgVH5+Q3edwQJSGlFKUaBVLwGgWR0B2bqMrEtNBdX2UKGgGaAloD0MIbVM8LuqUcUCUhpRSlGgVS7VoFkdAdm7WXkYGdXV9lChoBmgJaA9DCNl3RfA/znJAlIaUUpRoFUumaBZHQHZu5sGgSOB1fZQoaAZoCWgPQwgMdO0LKAtxQJSGlFKUaBVLx2gWR0B2b3xAjY7JdX2UKGgGaAloD0MIVmR0QFL4ckCUhpRSlGgVS81oFkdAdnGQumJm/XV9lChoBmgJaA9DCKqZtRSQE1BAlIaUUpRoFUtTaBZHQHZxnQY1pCd1fZQoaAZoCWgPQwgiqYWSSTdyQJSGlFKUaBVLrWgWR0B2cqU3XI2gdX2UKGgGaAloD0MI/wdYqzZjckCUhpRSlGgVS75oFkdAdnAeCkGiYnV9lChoBmgJaA9DCAivXdowKXNAlIaUUpRoFUvAaBZHQHZvpTho/Rp1fZQoaAZoCWgPQwghy4KJP75yQJSGlFKUaBVLx2gWR0B2cVlwtJ4CdX2UKGgGaAloD0MIe7374z39cECUhpRSlGgVS4toFkdAdnFVWjoIOnV9lChoBmgJaA9DCGfROxWwSHFAlIaUUpRoFUu8aBZHQHZzG/8EV351fZQoaAZoCWgPQwiLpN3oo4RxQJSGlFKUaBVLt2gWR0B2ceS0Sh8IdX2UKGgGaAloD0MIVtgMcEE7cUCUhpRSlGgVS7hoFkdAdnFflZHNHHV9lChoBmgJaA9DCFb18jvNRHJAlIaUUpRoFUvIaBZHQHZxu8K5TZR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4356, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXkM6XFVzZXJzXGJyaWFuXC52aXJ0dWFsZW52c1x1bml0MS1oSm1sRTN0elxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.9.13", "Stable-Baselines3": "1.7.0a10", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}