File size: 4,511 Bytes
77b834f
9c40e33
0853189
 
 
4cd0c8b
59a7205
62c8653
 
4cd0c8b
 
62c8653
0853189
 
 
 
 
 
 
 
 
 
77b834f
4cd0c8b
df81e7c
4cd0c8b
6548019
 
 
 
 
89dfb27
c6c1af7
89dfb27
 
 
b826aee
6548019
84e9fff
95deb26
 
84e9fff
6548019
b826aee
89dfb27
 
 
4691a82
 
 
 
 
e2d41dc
 
4f953af
e2d41dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59722dd
89dfb27
 
 
d8ef9b4
457eb12
b826aee
457eb12
1fabafe
 
 
 
457eb12
 
4cd0c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c40e33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: other
licence_name: bria-rmbg-1.4
license_link: https://bria.ai/bria-huggingface-model-license-agreement/

tags:
- remove background
- background
- background removal
- Pytorch
- vision
- legal liability

extra_gated_prompt: This model weights by BRIA AI can be obtained after a commercial license is agreed upon. Fill in the form below and we reach out to you.
extra_gated_fields:
  Name: text
  Company/Org name: text
  Org Type (Early/Growth Startup, Enterprise, Academy): text
  Role: text
  Country: text
  Email: text
  By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
---

# BRIA Background Removal v1.4 Model Card

RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of
categories and image types. This model has been trained on a carefully selected dataset, which includes:
general stock images, e-commerce, gaming, and advertising content, making it suitable for various use cases. 
Developed by BRIA AI, RMBG v1.4 is available as an open-source tool for non-commercial use.


![examples](t4.png)

### Model Description

- **Developed by:** [BRIA AI](https://bria.ai/)
- **Model type:** Background Removal 
- **License:** [bria-rmbg-1.4](https://bria.ai/bria-huggingface-model-license-agreement/)
  - The model is open for non-commercial use.
  - Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us)

- **Model Description:** BRIA RMBG 1.4 is an saliency segmentation model trained exclusively on a professional-grade dataset.



## Training data
Bria-RMBG model was trained over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.

### Distribution of images:

| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Objects only | 45.11% |
| People with objects/animals | 25.24% |
| People only | 17.35% |
| people/objects/animals with text | 8.52% |
| Text only | 2.52% |
| Animals only | 1.89% |

| Category | Distribution |
| -----------------------------------| -----------------------------------------:|
| Photorealistic | 87.70% |
| Non-Photorealistic | 12.30% |


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Non Solid Background | 52.05% |
| Solid Background | 47.95% 


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Single main foreground object | 51.42% |
| Multiple objects in the foreground | 48.58% |


## Qualitative Evaluation

![examples](results.png)

- **Inference Time :** 1 sec on Nvidia A10 GPU

## Architecture

The model’s architecture is based on [IS-Net](https://github.com/xuebinqin/DIS). 
Yet, we employ a distinct training scheme and utilize our proprietary data for the training process, enhancing the model's effectiveness.


## Usage

```python
import os
import numpy as np
from skimage import io
from glob import glob
from tqdm import tqdm
import cv2
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from models import BriaRMBG

input_size=[1024,1024]
net=BriaRMBG()

model_path = "./model.pth"
im_path = "./example_image.jpg"
result_path = "."

if torch.cuda.is_available():
    net.load_state_dict(torch.load(model_path))
    net=net.cuda()
else:
    net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()    

# prepare input
im = io.imread(im_path)
if len(im.shape) < 3:
    im = im[:, :, np.newaxis]
im_size=im.shape[0:2]
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8)
image = torch.divide(im_tensor,255.0)
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])

if torch.cuda.is_available():
    image=image.cuda()

# inference 
result=net(image)

# post process
result = torch.squeeze(F.interpolate(result[0][0], size=im_size, mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)

# save result
im_name=im_path.split('/')[-1].split('.')[0]
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
cv2.imwrite(os.path.join(result_path, im_name+".png"), im_array)
```