File size: 3,023 Bytes
9b36d49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
base_model: pierreguillou/ner-bert-large-cased-pt-lenerbr
tags:
- generated_from_trainer
datasets:
- contratos_tceal
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner-bert-large-cased-pt-lenerbr-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: contratos_tceal
type: contratos_tceal
config: contratos_tceal
split: validation
args: contratos_tceal
metrics:
- name: Precision
type: precision
value: 0.7549019607843137
- name: Recall
type: recall
value: 0.8115313081215128
- name: F1
type: f1
value: 0.7821930086644756
- name: Accuracy
type: accuracy
value: 0.883160638230246
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-bert-large-cased-pt-lenerbr-finetuned-ner
This model is a fine-tuned version of [pierreguillou/ner-bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) on the contratos_tceal dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.7549
- Recall: 0.8115
- F1: 0.7822
- Accuracy: 0.8832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 91 | nan | 0.6987 | 0.7433 | 0.7203 | 0.8620 |
| No log | 2.0 | 182 | nan | 0.7040 | 0.7564 | 0.7292 | 0.8624 |
| No log | 3.0 | 273 | nan | 0.7317 | 0.7929 | 0.7611 | 0.8731 |
| No log | 4.0 | 364 | nan | 0.7501 | 0.8097 | 0.7788 | 0.8838 |
| No log | 5.0 | 455 | nan | 0.7504 | 0.8332 | 0.7897 | 0.8857 |
| 0.3495 | 6.0 | 546 | nan | 0.7551 | 0.8103 | 0.7817 | 0.8799 |
| 0.3495 | 7.0 | 637 | nan | 0.7533 | 0.8215 | 0.7859 | 0.8824 |
| 0.3495 | 8.0 | 728 | nan | 0.7578 | 0.7991 | 0.7779 | 0.8785 |
| 0.3495 | 9.0 | 819 | nan | 0.7520 | 0.8196 | 0.7843 | 0.8840 |
| 0.3495 | 10.0 | 910 | nan | 0.7549 | 0.8115 | 0.7822 | 0.8832 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|