File size: 12,683 Bytes
2bc7d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3979ad
2bc7d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include "ggml/ggml.h"

#include "common-ggml.h"
#include "common.h"

#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <stdint.h>
#include <string>
#include <vector>

struct btlm_vocab {
  using id = int32_t;
  using token = std::string;

  std::map<token, id> token_to_id;
  std::map<id, token> id_to_token;
  std::vector<std::string> special_tokens;
};

struct btlm_params {
  int32_t seed = -1; // RNG seed
  int32_t n_threads = std::min(4, (int32_t)std::thread::hardware_concurrency());
  int32_t n_predict = 200; // new tokens to predict
  int32_t n_batch = 8;     // batch size for prompt processing

  // sampling parameters
  int32_t top_k = 40;
  float top_p = 0.9f;
  float temp = 0.9f;
  int32_t repeat_last_n = 64;
  float repeat_penalty = 1.00f;

  std::string model =
      "/home/madman/Desktop/ml_play/ml_models/btlm-3b.ggml.bin"; // model path
  std::string prompt = "Capital of Nepal is";
  std::string token_test = "";
};

struct btlm_hparams {
  int32_t n_vocab;
  int32_t n_ctx;
  int32_t n_embd;
  int32_t n_head;
  int32_t n_layer;
  int32_t n_inner;
  int32_t ftype;
};

struct btlm_layer {
  // normalization
  struct ggml_tensor *ln_1_g;
  struct ggml_tensor *ln_1_b;

  struct ggml_tensor *ln_2_g;
  struct ggml_tensor *ln_2_b;

  // attention
  struct ggml_tensor *c_attn_attn_w;
  struct ggml_tensor *c_attn_attn_b;
  struct ggml_tensor *c_attn_attn_scb;

  struct ggml_tensor *c_attn_proj_w;
  struct ggml_tensor *c_attn_proj_b;
  struct ggml_tensor *c_attn_proj_scb;

  // mlp
  struct ggml_tensor *c_mlp_fc_w;
  struct ggml_tensor *c_mlp_fc_b;
  struct ggml_tensor *c_mlp_fc_scb;

  struct ggml_tensor *c_mlp_fc2_w;
  struct ggml_tensor *c_mlp_fc2_b;
  struct ggml_tensor *c_mlp_fc2_scb;

  struct ggml_tensor *c_mlp_proj_w;
  struct ggml_tensor *c_mlp_proj_b;
  struct ggml_tensor *c_mlp_proj_scb;
};

struct btlm_model {
  btlm_hparams hparams;

  // normalization
  struct ggml_tensor *ln_f_g;
  struct ggml_tensor *ln_f_b;

  struct ggml_tensor *wte; // position embedding
  struct ggml_tensor *alibi_slopes;
  struct ggml_tensor *lm_head; // language model head

  std::vector<btlm_layer> layers;

  // key + value memory
  struct ggml_tensor *memory_k;
  struct ggml_tensor *memory_v;

  //
  struct ggml_context *ctx;
  std::map<std::string, struct ggml_tensor *> tensors;
};

// load the model's weights from a file
bool btlm_model_load(const std::string &fname, btlm_model &model,
                     btlm_vocab &vocab) {
  printf("%s: loading model from '%s'\n", __func__, fname.c_str());

  auto fin = std::ifstream(fname, std::ios::binary);
  if (!fin) {
    fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
    return false;
  }

  // verify magic
  {
    uint32_t magic;
    fin.read((char *)&magic, sizeof(magic));
    if (magic != GGML_FILE_MAGIC) {
      fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__,
              fname.c_str());
      return false;
    }
  }

  // load hparams
  {
    auto &hparams = model.hparams;

    fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
    fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));
    fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
    fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
    fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
    fin.read((char *)&hparams.n_inner, sizeof(hparams.n_inner));
    fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));

    const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;

    printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
    printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
    printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
    printf("%s: n_head  = %d\n", __func__, hparams.n_head);
    printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
    printf("%s: n_inner = %d\n", __func__, hparams.n_inner);
    printf("%s: ftype   = %d\n", __func__, hparams.ftype);
    printf("%s: qntvr   = %d\n", __func__, qntvr);

    hparams.ftype %= GGML_QNT_VERSION_FACTOR;
  }

  // for the big tensors, we have the option to store the data in 16-bit floats
  // or quantized in order to save memory and also to speed up the computation
  ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
  if (wtype == GGML_TYPE_COUNT) {
    fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
            __func__, fname.c_str(), model.hparams.ftype);
    return false;
  }

  auto &ctx = model.ctx;
  size_t ctx_size = 0;

  {

    ctx_size = 9000000000; // fixme => actually calculate this

    printf("%s: ggml tensor size = %d bytes\n", __func__,
           (int)sizeof(ggml_tensor));
    printf("%s: ggml ctx size = %6.2f MB\n", __func__,
           ctx_size / (1024.0 * 1024.0));
    printf("%s: ggml ctx size = %d \n", __func__, ctx_size);
  }

  // create the ggml context
  {
    struct ggml_init_params params = {
        /*.mem_size   =*/ctx_size,
        /*.mem_buffer =*/NULL,
        /*.no_alloc   =*/false,
    };

    model.ctx = ggml_init(params);
    if (!model.ctx) {
      fprintf(stderr, "%s: ggml_init() failed\n", __func__);
      return false;
    }
  }

  // load vocab
  {
    int32_t n_vocab = model.hparams.n_vocab;

    std::string word;
    std::vector<char> buf(128);

    for (int i = 0; i < n_vocab; i++) {
      uint32_t len;
      fin.read((char *)&len, sizeof(len));

      buf.resize(len);
      fin.read((char *)buf.data(), len);
      word.assign(buf.data(), len);

      // printf("%s \n", word.c_str());

      vocab.token_to_id[word] = i;
      vocab.id_to_token[i] = word;
    }
  }

  {

    // alloc memory

    const auto &hparams = model.hparams;

    const int n_embd = hparams.n_embd;
    const int n_layer = hparams.n_layer;
    //   const int n_ctx = hparams.n_ctx;
    const int n_vocab = hparams.n_vocab;

    model.layers.resize(n_layer);

    model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
    model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
    model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
    model.lm_head = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
    model.alibi_slopes = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 32);

    // map by name
    model.tensors["model/ln_f/g"] = model.ln_f_g;
    model.tensors["model/ln_f/b"] = model.ln_f_b;
    model.tensors["model/wte"] = model.wte;
    model.tensors["model/lm_head"] = model.lm_head;
    model.tensors["model/relative_pe/slopes"] = model.alibi_slopes;

    for (int i = 0; i < n_layer; ++i) {
      auto &layer = model.layers[i];

      layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
      layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);

      layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
      layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);

      layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 3 * n_embd, n_embd );
      layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);
      layer.c_attn_attn_scb =
          ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);

      layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_embd);
      layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
      layer.c_attn_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);

      layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 6832, n_embd);
      layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
      layer.c_mlp_fc_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);

      layer.c_mlp_fc2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6832 );
      layer.c_mlp_fc2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
      layer.c_mlp_fc2_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);

      layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6848);
      layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
      layer.c_mlp_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);

      // map by name
      model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
      model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;

      model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
      model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;

      model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
      model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
     model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/scb"] = layer.c_attn_attn_scb;


      model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] =
          layer.c_attn_proj_w;
      model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] =
          layer.c_attn_proj_b;
      model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/scb"] =
          layer.c_attn_proj_scb;

      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] =
          layer.c_mlp_fc_w;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] =
          layer.c_mlp_fc_b;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/scb"] =
          layer.c_mlp_fc_scb;

      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/w"] =
          layer.c_mlp_fc2_w;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/b"] =
          layer.c_mlp_fc2_b;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/scb"] =
          layer.c_mlp_fc2_scb;


      model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] =
          layer.c_mlp_proj_w;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] =
          layer.c_mlp_proj_b;
      model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/scb"] =
          layer.c_mlp_proj_scb;
    }
  }

  // load weights
  {
    size_t total_size = 0;

    bool has_lm_head = false;

    while (true) {
      int32_t n_dims;
      int32_t length;
      int32_t ttype;

      fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
      fin.read(reinterpret_cast<char *>(&length), sizeof(length));
      fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));

      if (fin.eof()) {
        break;
      }

      int32_t nelements = 1;
      int32_t ne[2] = {1, 1};
      for (int i = 0; i < n_dims; ++i) {
        fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
        nelements *= ne[i];
      }

      std::string name(length, 0);
      fin.read(&name[0], length);

      printf("processing tensor '%s' in model file\n", name.data());

      if (model.tensors.find(name.data()) == model.tensors.end()) {
        fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__,
                name.data());
        return false;
      }

      auto tensor = model.tensors[name.data()];
      if (ggml_nelements(tensor) != nelements) {
        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
                __func__, name.data());
        return false;
      }

      if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
        fprintf(stderr,
                "%s: tensor '%s' has wrong shape in model file: got [%d, %d], "
                "expected [%d, %d]\n",
                __func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1],
                ne[0], ne[1]);
        return false;
      }

      // for debugging
      if (1) {
        printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n",
               name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)),
               ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
      }

      const size_t bpe = ggml_type_size(ggml_type(ttype));

      if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
          ggml_nbytes(tensor)) {
        fprintf(stderr,
                "%s: tensor '%s' has wrong size in model file: got %zu, "
                "expected %zu\n",
                __func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
        return false;
      }

      fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));


      total_size += ggml_nbytes(tensor);
    }

    printf("%s: model size  = %8.2f MB\n", __func__,
           total_size / 1024.0 / 1024.0);
  }

  fin.close();

  return true;
}

int main(int argc, char **argv) {
  btlm_params params;
  btlm_model models;
  btlm_vocab vocab;

  btlm_model_load(params.model, models, vocab);

  return 0;
}