File size: 12,683 Bytes
2bc7d0b c3979ad 2bc7d0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
#include "ggml/ggml.h"
#include "common-ggml.h"
#include "common.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <stdint.h>
#include <string>
#include <vector>
struct btlm_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
};
struct btlm_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t)std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_batch = 8; // batch size for prompt processing
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
std::string model =
"/home/madman/Desktop/ml_play/ml_models/btlm-3b.ggml.bin"; // model path
std::string prompt = "Capital of Nepal is";
std::string token_test = "";
};
struct btlm_hparams {
int32_t n_vocab;
int32_t n_ctx;
int32_t n_embd;
int32_t n_head;
int32_t n_layer;
int32_t n_inner;
int32_t ftype;
};
struct btlm_layer {
// normalization
struct ggml_tensor *ln_1_g;
struct ggml_tensor *ln_1_b;
struct ggml_tensor *ln_2_g;
struct ggml_tensor *ln_2_b;
// attention
struct ggml_tensor *c_attn_attn_w;
struct ggml_tensor *c_attn_attn_b;
struct ggml_tensor *c_attn_attn_scb;
struct ggml_tensor *c_attn_proj_w;
struct ggml_tensor *c_attn_proj_b;
struct ggml_tensor *c_attn_proj_scb;
// mlp
struct ggml_tensor *c_mlp_fc_w;
struct ggml_tensor *c_mlp_fc_b;
struct ggml_tensor *c_mlp_fc_scb;
struct ggml_tensor *c_mlp_fc2_w;
struct ggml_tensor *c_mlp_fc2_b;
struct ggml_tensor *c_mlp_fc2_scb;
struct ggml_tensor *c_mlp_proj_w;
struct ggml_tensor *c_mlp_proj_b;
struct ggml_tensor *c_mlp_proj_scb;
};
struct btlm_model {
btlm_hparams hparams;
// normalization
struct ggml_tensor *ln_f_g;
struct ggml_tensor *ln_f_b;
struct ggml_tensor *wte; // position embedding
struct ggml_tensor *alibi_slopes;
struct ggml_tensor *lm_head; // language model head
std::vector<btlm_layer> layers;
// key + value memory
struct ggml_tensor *memory_k;
struct ggml_tensor *memory_v;
//
struct ggml_context *ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// load the model's weights from a file
bool btlm_model_load(const std::string &fname, btlm_model &model,
btlm_vocab &vocab) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__,
fname.c_str());
return false;
}
}
// load hparams
{
auto &hparams = model.hparams;
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *)&hparams.n_inner, sizeof(hparams.n_inner));
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_inner = %d\n", __func__, hparams.n_inner);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// for the big tensors, we have the option to store the data in 16-bit floats
// or quantized in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto &ctx = model.ctx;
size_t ctx_size = 0;
{
ctx_size = 9000000000; // fixme => actually calculate this
printf("%s: ggml tensor size = %d bytes\n", __func__,
(int)sizeof(ggml_tensor));
printf("%s: ggml ctx size = %6.2f MB\n", __func__,
ctx_size / (1024.0 * 1024.0));
printf("%s: ggml ctx size = %d \n", __func__, ctx_size);
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ctx_size,
/*.mem_buffer =*/NULL,
/*.no_alloc =*/false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// load vocab
{
int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *)&len, sizeof(len));
buf.resize(len);
fin.read((char *)buf.data(), len);
word.assign(buf.data(), len);
// printf("%s \n", word.c_str());
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
{
// alloc memory
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
// const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
model.lm_head = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
model.alibi_slopes = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 32);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/lm_head"] = model.lm_head;
model.tensors["model/relative_pe/slopes"] = model.alibi_slopes;
for (int i = 0; i < n_layer; ++i) {
auto &layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 3 * n_embd, n_embd );
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);
layer.c_attn_attn_scb =
ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.c_attn_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 6832, n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
layer.c_mlp_fc_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
layer.c_mlp_fc2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6832 );
layer.c_mlp_fc2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
layer.c_mlp_fc2_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6848);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
layer.c_mlp_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/scb"] = layer.c_attn_attn_scb;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] =
layer.c_attn_proj_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] =
layer.c_attn_proj_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/scb"] =
layer.c_attn_proj_scb;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] =
layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] =
layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/scb"] =
layer.c_mlp_fc_scb;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/w"] =
layer.c_mlp_fc2_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/b"] =
layer.c_mlp_fc2_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/scb"] =
layer.c_mlp_fc2_scb;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] =
layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] =
layer.c_mlp_proj_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/scb"] =
layer.c_mlp_proj_scb;
}
}
// load weights
{
size_t total_size = 0;
bool has_lm_head = false;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
printf("processing tensor '%s' in model file\n", name.data());
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__,
name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
__func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%d, %d], "
"expected [%d, %d]\n",
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1],
ne[0], ne[1]);
return false;
}
// for debugging
if (1) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n",
name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)),
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
ggml_nbytes(tensor)) {
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
}
printf("%s: model size = %8.2f MB\n", __func__,
total_size / 1024.0 / 1024.0);
}
fin.close();
return true;
}
int main(int argc, char **argv) {
btlm_params params;
btlm_model models;
btlm_vocab vocab;
btlm_model_load(params.model, models, vocab);
return 0;
} |