|
--- |
|
language: ru |
|
datasets: |
|
- SberDevices/Golos |
|
- bond005/sova_rudevices |
|
- bond005/rulibrispeech |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
widget: |
|
- example_title: test sound with Russian speech "нейросети это хорошо" |
|
src: https://huggingface.co/bond005/wav2vec2-large-ru-golos/resolve/main/test_sound_ru.flac |
|
model-index: |
|
- name: XLSR Wav2Vec2 Russian by Ivan Bondarenko |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Sberdevices Golos (crowd) |
|
type: SberDevices/Golos |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 10.144 |
|
- name: Test CER |
|
type: cer |
|
value: 2.168 |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Sberdevices Golos (farfield) |
|
type: SberDevices/Golos |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 20.353 |
|
- name: Test CER |
|
type: cer |
|
value: 6.030 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice ru |
|
type: common_voice |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 18.548 |
|
- name: Test CER |
|
type: cer |
|
value: 4.000 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Sova RuDevices |
|
type: bond005/sova_rudevices |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 25.410 |
|
- name: Test CER |
|
type: cer |
|
value: 7.965 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Russian Librispeech |
|
type: bond005/rulibrispeech |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 21.872 |
|
- name: Test CER |
|
type: cer |
|
value: 4.469 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Voxforge Ru |
|
type: dangrebenkin/voxforge-ru-dataset |
|
args: ru |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 27.084 |
|
- name: Test CER |
|
type: cer |
|
value: 6.986 |
|
--- |
|
|
|
# Wav2Vec2-Large-Ru-Golos |
|
|
|
The Wav2Vec2 model is based on [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53), fine-tuned in Russian using [Sberdevices Golos](https://huggingface.co/datasets/SberDevices/Golos) with audio augmentations like as pitch shift, acceleration/deceleration of sound, reverberation etc. |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
To transcribe audio files the model can be used as a standalone acoustic model as follows: |
|
|
|
```python |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
from datasets import load_dataset |
|
import torch |
|
|
|
# load model and tokenizer |
|
processor = Wav2Vec2Processor.from_pretrained("bond005/wav2vec2-large-ru-golos") |
|
model = Wav2Vec2ForCTC.from_pretrained("bond005/wav2vec2-large-ru-golos") |
|
|
|
# load the test part of Golos dataset and read first soundfile |
|
ds = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test") |
|
|
|
# tokenize |
|
processed = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest") # Batch size 1 |
|
|
|
# retrieve logits |
|
logits = model(processed.input_values, attention_mask=processed.attention_mask).logits |
|
|
|
# take argmax and decode |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
print(transcription) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This code snippet shows how to evaluate **bond005/wav2vec2-large-ru-golos** on Golos dataset's "crowd" and "farfield" test data. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import torch |
|
from jiwer import wer, cer # we need word error rate (WER) and character error rate (CER) |
|
|
|
# load the test part of Golos Crowd and remove samples with empty "true" transcriptions |
|
golos_crowd_test = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test") |
|
golos_crowd_test = golos_crowd_test.filter( |
|
lambda it1: (it1["transcription"] is not None) and (len(it1["transcription"].strip()) > 0) |
|
) |
|
|
|
# load the test part of Golos Farfield and remove sampels with empty "true" transcriptions |
|
golos_farfield_test = load_dataset("bond005/sberdevices_golos_100h_farfield", split="test") |
|
golos_farfield_test = golos_farfield_test.filter( |
|
lambda it2: (it2["transcription"] is not None) and (len(it2["transcription"].strip()) > 0) |
|
) |
|
|
|
# load model and tokenizer |
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") |
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") |
|
|
|
# recognize one sound |
|
def map_to_pred(batch): |
|
# tokenize and vectorize |
|
processed = processor( |
|
batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], |
|
return_tensors="pt", padding="longest" |
|
) |
|
input_values = processed.input_values.to("cuda") |
|
attention_mask = processed.attention_mask.to("cuda") |
|
|
|
# recognize |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
# decode |
|
transcription = processor.batch_decode(predicted_ids) |
|
batch["text"] = transcription[0] |
|
return batch |
|
|
|
# calculate WER and CER on the crowd domain |
|
crowd_result = golos_crowd_test.map(map_to_pred, remove_columns=["audio"]) |
|
crowd_wer = wer(crowd_result["transcription"], crowd_result["text"]) |
|
crowd_cer = cer(crowd_result["transcription"], crowd_result["text"]) |
|
print("Word error rate on the Crowd domain:", crowd_wer) |
|
print("Character error rate on the Crowd domain:", crowd_cer) |
|
|
|
# calculate WER and CER on the farfield domain |
|
farfield_result = golos_farfield_test.map(map_to_pred, remove_columns=["audio"]) |
|
farfield_wer = wer(farfield_result["transcription"], farfield_result["text"]) |
|
farfield_cer = cer(farfield_result["transcription"], farfield_result["text"]) |
|
print("Word error rate on the Farfield domain:", farfield_wer) |
|
print("Character error rate on the Farfield domain:", farfield_cer) |
|
``` |
|
|
|
*Result (WER, %)*: |
|
|
|
| "crowd" | "farfield" | |
|
|---------|------------| |
|
| 10.144 | 20.353 | |
|
|
|
*Result (CER, %)*: |
|
|
|
| "crowd" | "farfield" | |
|
|---------|------------| |
|
| 2.168 | 6.030 | |
|
|
|
You can see the evaluation script on other datasets, including Russian Librispeech and SOVA RuDevices, on my Kaggle web-page https://www.kaggle.com/code/bond005/wav2vec2-ru-eval |
|
|
|
## Citation |
|
If you want to cite this model you can use this: |
|
|
|
```bibtex |
|
@misc{bondarenko2022wav2vec2-large-ru-golos, |
|
title={XLSR Wav2Vec2 Russian by Ivan Bondarenko}, |
|
author={Bondarenko, Ivan}, |
|
publisher={Hugging Face}, |
|
journal={Hugging Face Hub}, |
|
howpublished={\url{https://huggingface.co/bond005/wav2vec2-large-ru-golos}}, |
|
year={2022} |
|
} |
|
``` |
|
|