File size: 63,168 Bytes
f2432b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
---
base_model: microsoft/deberta-v3-small
datasets:
- tals/vitaminc
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:225247
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: how long to grill boneless skinless chicken breasts in oven
  sentences:
  - "[ syll. a-ka-hi, ak-ahi ] The baby boy name Akahi is also used as a girl name.\
    \ Its pronunciation is AA K AA HHiy â\x80 . Akahi's origin, as well as its use,\
    \ is in the Hawaiian language. The name's meaning is never before. Akahi is infrequently\
    \ used as a baby name for boys."
  - October consists of 31 days. November has 30 days. When you add both together
    they have 61 days.
  - Heat a grill or grill pan. When the grill is hot, place the chicken on the grill
    and cook for about 4 minutes per side, or until cooked through. You can also bake
    the thawed chicken in a 375 degree F oven for 15 minutes, or until cooked through.
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
    mainland China .
  sentences:
  - 'More than 3,700 people have died : around 3,100 in mainland China and around
    550 in all other countries combined .'
  - 'More than 3,200 people have died : almost 3,000 in mainland China and around
    275 in other countries .'
  - more than 4,900 deaths have been attributed to COVID-19 .
- source_sentence: Most red algae species live in oceans.
  sentences:
  - Where do most red algae species live?
  - Which layer of the earth is molten?
  - As a diver descends, the increase in pressure causes the body’s air pockets in
    the ears and lungs to do what?
- source_sentence: Binary compounds of carbon with less electronegative elements are
    called carbides.
  sentences:
  - What are four children born at one birth called?
  - Binary compounds of carbon with less electronegative elements are called what?
  - The water cycle involves movement of water between air and what?
- source_sentence: What is the basic monetary unit of Iceland?
  sentences:
  - 'Ao dai - Vietnamese traditional dress - YouTube Ao dai - Vietnamese traditional
    dress Want to watch this again later? Sign in to add this video to a playlist.
    Need to report the video? Sign in to report inappropriate content. Rating is available
    when the video has been rented. This feature is not available right now. Please
    try again later. Uploaded on Jul 8, 2009 Simple, yet charming, graceful and elegant,
    áo dài was designed to praise the slender beauty of Vietnamese women. The dress
    is a genius combination of ancient and modern. It shows every curve on the girl''s
    body, creating sexiness for the wearer, yet it still preserves the traditional
    feminine grace of Vietnamese women with its charming flowing flaps. The simplicity
    of áo dài makes it convenient and practical, something that other Asian traditional
    clothes lack. The waist-length slits of the flaps allow every movement of the
    legs: walking, running, riding a bicycle, climbing a tree, doing high kicks. The
    looseness of the pants allows comfortability. As a girl walks in áo dài, the movements
    of the flaps make it seem like she''s not walking but floating in the air. This
    breath-taking beautiful image of a Vietnamese girl walking in áo dài has been
    an inspiration for generations of Vietnamese poets, novelists, artists and has
    left a deep impression for every foreigner who has visited the country. Category'
  - 'Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary
    Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary
    http://www.thefreedictionary.com/Icelandic+monetary+unit Related to Icelandic
    monetary unit: Icelandic Old Krona ThesaurusAntonymsRelated WordsSynonymsLegend:
    monetary unit - a unit of money Icelandic krona , krona - the basic unit of money
    in Iceland eyrir - 100 aurar equal 1 krona in Iceland Want to thank TFD for its
    existence? Tell a friend about us , add a link to this page, or visit the webmaster''s
    page for free fun content . Link to this page: Copyright © 2003-2017 Farlex, Inc
    Disclaimer All content on this website, including dictionary, thesaurus, literature,
    geography, and other reference data is for informational purposes only. This information
    should not be considered complete, up to date, and is not intended to be used
    in place of a visit, consultation, or advice of a legal, medical, or any other
    professional.'
  - 'Food-Info.net : E-numbers : E140: Chlorophyll CI 75810, Natural Green 3, Chlorophyll
    A, Magnesium chlorophyll Origin: Natural green colour, present in all plants and
    algae. Commercially extracted from nettles, grass and alfalfa. Function & characteristics:'
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.22248205020578934
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.24802235964390085
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.26632593273308647
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2843623073856928
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.2323160413842197
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.24799036249272113
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.22239084967931927
      name: Pearson Dot
    - type: spearman_dot
      value: 0.24791612015173234
      name: Spearman Dot
    - type: pearson_max
      value: 0.26632593273308647
      name: Pearson Max
    - type: spearman_max
      value: 0.2843623073856928
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.666015625
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.983686089515686
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.5065885797950219
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7642872333526611
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.3392156862745098
      name: Cosine Precision
    - type: cosine_recall
      value: 1.0
      name: Cosine Recall
    - type: cosine_ap
      value: 0.34411819659341086
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.666015625
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 755.60302734375
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.5065885797950219
      name: Dot F1
    - type: dot_f1_threshold
      value: 587.0625
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.3392156862745098
      name: Dot Precision
    - type: dot_recall
      value: 1.0
      name: Dot Recall
    - type: dot_ap
      value: 0.344109544232086
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.6640625
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 62.69102096557617
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.5058479532163743
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 337.6861877441406
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.3385518590998043
      name: Manhattan Precision
    - type: manhattan_recall
      value: 1.0
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.35131239981425566
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.666015625
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 5.00581693649292
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.5065885797950219
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 19.022436141967773
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.3392156862745098
      name: Euclidean Precision
    - type: euclidean_recall
      value: 1.0
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.3441246898925644
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.666015625
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 755.60302734375
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.5065885797950219
      name: Max F1
    - type: max_f1_threshold
      value: 587.0625
      name: Max F1 Threshold
    - type: max_precision
      value: 0.3392156862745098
      name: Max Precision
    - type: max_recall
      value: 1.0
      name: Max Recall
    - type: max_ap
      value: 0.35131239981425566
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.591796875
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9258557558059692
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6291834002677376
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.750666618347168
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.4598825831702544
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9957627118644068
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5585355274462735
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.591796875
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 711.18359375
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6291834002677376
      name: Dot F1
    - type: dot_f1_threshold
      value: 576.5970458984375
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.4598825831702544
      name: Dot Precision
    - type: dot_recall
      value: 0.9957627118644068
      name: Dot Recall
    - type: dot_ap
      value: 0.5585297234749824
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.619140625
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 188.09068298339844
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6301775147928994
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 237.80462646484375
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.48409090909090907
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.902542372881356
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.5898283705050701
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.591796875
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 10.672666549682617
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6291834002677376
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 19.553747177124023
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.4598825831702544
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.9957627118644068
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5585355274462735
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.619140625
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 711.18359375
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6301775147928994
      name: Max F1
    - type: max_f1_threshold
      value: 576.5970458984375
      name: Max F1 Threshold
    - type: max_precision
      value: 0.48409090909090907
      name: Max Precision
    - type: max_recall
      value: 0.9957627118644068
      name: Max Recall
    - type: max_ap
      value: 0.5898283705050701
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v3-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): AdvancedWeightedPooling(
    (linear_cls): Linear(in_features=768, out_features=768, bias=True)
    (mha): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
    )
    (layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp")
# Run inference
sentences = [
    'What is the basic monetary unit of Iceland?',
    "Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary http://www.thefreedictionary.com/Icelandic+monetary+unit Related to Icelandic monetary unit: Icelandic Old Krona ThesaurusAntonymsRelated WordsSynonymsLegend: monetary unit - a unit of money Icelandic krona , krona - the basic unit of money in Iceland eyrir - 100 aurar equal 1 krona in Iceland Want to thank TFD for its existence? Tell a friend about us , add a link to this page, or visit the webmaster's page for free fun content . Link to this page: Copyright © 2003-2017 Farlex, Inc Disclaimer All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.",
    'Food-Info.net : E-numbers : E140: Chlorophyll CI 75810, Natural Green 3, Chlorophyll A, Magnesium chlorophyll Origin: Natural green colour, present in all plants and algae. Commercially extracted from nettles, grass and alfalfa. Function & characteristics:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.2225    |
| **spearman_cosine** | **0.248** |
| pearson_manhattan   | 0.2663    |
| spearman_manhattan  | 0.2844    |
| pearson_euclidean   | 0.2323    |
| spearman_euclidean  | 0.248     |
| pearson_dot         | 0.2224    |
| spearman_dot        | 0.2479    |
| pearson_max         | 0.2663    |
| spearman_max        | 0.2844    |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.666      |
| cosine_accuracy_threshold    | 0.9837     |
| cosine_f1                    | 0.5066     |
| cosine_f1_threshold          | 0.7643     |
| cosine_precision             | 0.3392     |
| cosine_recall                | 1.0        |
| cosine_ap                    | 0.3441     |
| dot_accuracy                 | 0.666      |
| dot_accuracy_threshold       | 755.603    |
| dot_f1                       | 0.5066     |
| dot_f1_threshold             | 587.0625   |
| dot_precision                | 0.3392     |
| dot_recall                   | 1.0        |
| dot_ap                       | 0.3441     |
| manhattan_accuracy           | 0.6641     |
| manhattan_accuracy_threshold | 62.691     |
| manhattan_f1                 | 0.5058     |
| manhattan_f1_threshold       | 337.6862   |
| manhattan_precision          | 0.3386     |
| manhattan_recall             | 1.0        |
| manhattan_ap                 | 0.3513     |
| euclidean_accuracy           | 0.666      |
| euclidean_accuracy_threshold | 5.0058     |
| euclidean_f1                 | 0.5066     |
| euclidean_f1_threshold       | 19.0224    |
| euclidean_precision          | 0.3392     |
| euclidean_recall             | 1.0        |
| euclidean_ap                 | 0.3441     |
| max_accuracy                 | 0.666      |
| max_accuracy_threshold       | 755.603    |
| max_f1                       | 0.5066     |
| max_f1_threshold             | 587.0625   |
| max_precision                | 0.3392     |
| max_recall                   | 1.0        |
| **max_ap**                   | **0.3513** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.5918     |
| cosine_accuracy_threshold    | 0.9259     |
| cosine_f1                    | 0.6292     |
| cosine_f1_threshold          | 0.7507     |
| cosine_precision             | 0.4599     |
| cosine_recall                | 0.9958     |
| cosine_ap                    | 0.5585     |
| dot_accuracy                 | 0.5918     |
| dot_accuracy_threshold       | 711.1836   |
| dot_f1                       | 0.6292     |
| dot_f1_threshold             | 576.597    |
| dot_precision                | 0.4599     |
| dot_recall                   | 0.9958     |
| dot_ap                       | 0.5585     |
| manhattan_accuracy           | 0.6191     |
| manhattan_accuracy_threshold | 188.0907   |
| manhattan_f1                 | 0.6302     |
| manhattan_f1_threshold       | 237.8046   |
| manhattan_precision          | 0.4841     |
| manhattan_recall             | 0.9025     |
| manhattan_ap                 | 0.5898     |
| euclidean_accuracy           | 0.5918     |
| euclidean_accuracy_threshold | 10.6727    |
| euclidean_f1                 | 0.6292     |
| euclidean_f1_threshold       | 19.5537    |
| euclidean_precision          | 0.4599     |
| euclidean_recall             | 0.9958     |
| euclidean_ap                 | 0.5585     |
| max_accuracy                 | 0.6191     |
| max_accuracy_threshold       | 711.1836   |
| max_f1                       | 0.6302     |
| max_f1_threshold             | 576.597    |
| max_precision                | 0.4841     |
| max_recall                   | 0.9958     |
| **max_ap**                   | **0.5898** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Evaluation Dataset

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 128 evaluation samples
* Columns: <code>claim</code> and <code>evidence</code>
* Approximate statistics based on the first 128 samples:
  |         | claim                                                                             | evidence                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.42 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 35.55 tokens</li><li>max: 79 tokens</li></ul> |
* Samples:
  | claim                                                                               | evidence                                                                                                                                                                                                                                                                                                                                               |
  |:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Dragon Con had over 5000 guests .</code>                                      | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code>                                                                                                          |
  | <code>COVID-19 has reached more than 185 countries .</code>                         | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code>                                                                                                                                                                                                   |
  | <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 42
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `learning_rate`: 3e-05
- `weight_decay`: 0.001
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
- `warmup_ratio`: 0.25
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 42
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
- `warmup_ratio`: 0.25
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | vitaminc-pairs loss | negation-triplets loss | scitail-pairs-pos loss | scitail-pairs-qa loss | xsum-pairs loss | sciq pairs loss | qasc pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | trivia pairs loss | gooaq pairs loss | paws-pos loss | global dataset loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|:------:|:----:|:-------------:|:-------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------:|:---------------:|:---------------:|:---------------------:|:------------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:-------------------:|:------------------------:|:-----------------:|:---------------:|
| 0.0009 | 1    | 5.8564        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0018 | 2    | 7.1716        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0027 | 3    | 5.9095        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0035 | 4    | 5.0841        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0044 | 5    | 4.0184        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0053 | 6    | 6.2191        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0062 | 7    | 5.6124        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0071 | 8    | 3.9544        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0080 | 9    | 4.7149        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0088 | 10   | 4.9616        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0097 | 11   | 5.2794        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0106 | 12   | 8.8704        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0115 | 13   | 6.0707        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0124 | 14   | 5.4071        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0133 | 15   | 6.9104        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0142 | 16   | 6.0276        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0150 | 17   | 6.737         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0159 | 18   | 6.5354        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0168 | 19   | 5.206         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0177 | 20   | 5.2469        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0186 | 21   | 5.3771        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0195 | 22   | 4.979         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0204 | 23   | 4.7909        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0212 | 24   | 4.9086        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0221 | 25   | 4.8826        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0230 | 26   | 8.2266        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0239 | 27   | 8.3024        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0248 | 28   | 5.8745        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0257 | 29   | 4.7298        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0265 | 30   | 5.4614        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0274 | 31   | 5.8594        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0283 | 32   | 5.2401        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0292 | 33   | 5.1579        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0301 | 34   | 5.2181        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0310 | 35   | 4.6328        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0319 | 36   | 2.121         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0327 | 37   | 5.9026        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0336 | 38   | 7.3796        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0345 | 39   | 5.5361        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0354 | 40   | 4.0243        | 2.9018              | 5.6903                 | 2.1136                 | 2.8052                | 6.5831          | 0.8882          | 4.1148          | 5.0966                | 10.3911            | 10.9032       | 7.1904            | 8.1935           | 1.3943        | 5.6716              | 0.1879                   | 0.3385            | 0.5781          |
| 0.0363 | 41   | 4.9072        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0372 | 42   | 3.4439        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0381 | 43   | 4.9787        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0389 | 44   | 5.8318        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0398 | 45   | 5.3226        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0407 | 46   | 5.1181        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0416 | 47   | 4.7834        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0425 | 48   | 6.6303        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0434 | 49   | 5.8171        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0442 | 50   | 5.1962        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0451 | 51   | 5.2096        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0460 | 52   | 5.0943        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0469 | 53   | 4.9038        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0478 | 54   | 4.6479        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0487 | 55   | 5.5098        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0496 | 56   | 4.6979        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0504 | 57   | 3.1969        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0513 | 58   | 4.4127        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0522 | 59   | 3.7746        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0531 | 60   | 4.5378        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0540 | 61   | 5.0209        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0549 | 62   | 6.5936        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0558 | 63   | 4.2315        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0566 | 64   | 6.4269        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0575 | 65   | 4.2644        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0584 | 66   | 5.1388        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0593 | 67   | 5.1852        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0602 | 68   | 4.8057        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0611 | 69   | 3.1725        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0619 | 70   | 3.3322        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0628 | 71   | 5.139         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0637 | 72   | 4.307         | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0646 | 73   | 5.0133        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0655 | 74   | 4.0507        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0664 | 75   | 3.3895        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0673 | 76   | 5.6736        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0681 | 77   | 4.2572        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0690 | 78   | 3.0796        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0699 | 79   | 5.0199        | -                   | -                      | -                      | -                     | -               | -               | -               | -                     | -                  | -             | -                 | -                | -             | -                   | -                        | -                 | -               |
| 0.0708 | 80   | 4.1414        | 2.7794              | 4.8890                 | 1.8997                 | 2.6761                | 6.2096          | 0.7622          | 3.3129          | 4.5498                | 7.2056             | 7.6809        | 6.3792            | 6.6567           | 1.3848        | 5.0030              | 0.2480                   | 0.3513            | 0.5898          |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->