File size: 84,772 Bytes
472b81e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
---
base_model: microsoft/deberta-v3-small
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32500
- loss:GISTEmbedLoss
widget:
- source_sentence: A picture of a white gas range with figurines above.
sentences:
- A nerdy woman brushing her teeth with a friend nearby.
- a white stove turned off with a digital clock
- The plasma membrane also contains other molecules, primarily other lipids and
proteins. The green molecules in Figure above , for example, are the lipid cholesterol.
Molecules of cholesterol help the plasma membrane keep its shape. Many of the
proteins in the plasma membrane assist other substances in crossing the membrane.
- source_sentence: who makes the kentucky derby garland of roses
sentences:
- Accrington strengthened their position in the play-off places with a hard-fought
win over struggling Dagenham.
- "tidal energy can be used to produce electricity. Ocean thermal is energy derived\
\ from waves and also from tidal waves. \n Ocean thermal energy can be used to\
\ produce electricity."
- Kentucky Derby Trophy The Kroger Company has been the official florist of the
Kentucky Derby since 1987. After taking over the duties from the Kingsley Walker
florist, Kroger began constructing the prestigious garland in one of its local
stores for the public to view on Derby Eve. The preservation of the garland and
crowds of spectators watching its construction are a testament to the prestige
and mystique of the Garland of Roses.
- source_sentence: what is the difference between a general sense and a special sense?
sentences:
- 'Ian Curtis ( of Touching from a distance) Ian Kevin Curtis was an English musician
and singer-songwriter. He is best known as the lead singer and lyricist of the
post-punk band Joy Division. Joy Division released its debut album, Unknown Pleasures,
in 1979 and recorded its follow-up, Closer, in 1980. Curtis, who suffered from
epilepsy and depression, committed suicide on 18 May 1980, on the eve of Joy Division''s
first North American tour, resulting in the band''s dissolution and the subsequent
formation of New Order. Curtis was known for his baritone voice, dance style,
and songwriting filled with imagery of desolation, emptiness and alienation. In
1995, Curtis''s widow Deborah published Touching from a Distance: Ian Curtis and
Joy Division, a biography of the singer. His life and death Ian Kevin Curtis was
an English musician and singer-songwriter. He is best known as the lead singer
and lyricist of the post-punk band Joy Division. Joy Division released its debut
album, Unknown Pleasures, in 1979 and recorded its follow-up, Closer, in 1980.
Curtis, who suffered from epilepsy and depression, committed suicide on 18 May
1980, on the eve of Joy Division''s first North American tour, resulting in the
band''s dissolution and the subsequent formation of New Order. Curtis was known
for his baritone voice, dance style, and songwriting filled with imagery of desolation,
emptiness and alienation. In 1995, Curtis''s widow Deborah published Touching
from a Distance: Ian Curtis and Joy Division, a biography of the singer. His life
and death have been dramatised in the films 24 Hour Party People (2002) and Control
(2007). ...more'
- The human body has two basic types of senses, called special senses and general
senses. Special senses have specialized sense organs that gather sensory information
and change it into nerve impulses. ... General senses, in contrast, are all associated
with the sense of touch. They lack special sense organs.
- Captain Hook Barrie states in the novel that "Hook was not his true name. To reveal
who he really was would even at this date set the country in a blaze", and relates
that Peter Pan began their rivalry by feeding the pirate's hand to the crocodile.
He is said to be "Blackbeard's bo'sun" and "the only man of whom Barbecue was
afraid".[5] (In Robert Louis Stevenson's Treasure Island, one of the names Long
John Silver goes by is Barbecue.)[6]
- source_sentence: Retzius was born in Stockholm , son of the anatomist Anders Jahan
Retzius ( and grandson of the naturalist and chemist Anders Retzius ) .
sentences:
- Retzius was born in Stockholm , the son of anatomist Anders Jahan Retzius ( and
grandson of the naturalist and chemist Anders Retzius ) .
- As of 14 March , over 156,000 cases of COVID-19 have been reported in around 140
countries and territories ; more than 5,800 people have died from the disease
and around 75,000 have recovered .
- A person sitting on a stool on the street.
- source_sentence: who was the first person who made the violin
sentences:
- Alice in Chains Alice in Chains is an American rock band from Seattle, Washington,
formed in 1987 by guitarist and vocalist Jerry Cantrell and drummer Sean Kinney,[1]
who recruited bassist Mike Starr[1] and lead vocalist Layne Staley.[1][2][3] Starr
was replaced by Mike Inez in 1993.[4] After Staley's death in 2002, William DuVall
joined in 2006 as co-lead vocalist and rhythm guitarist. The band took its name
from Staley's previous group, the glam metal band Alice N' Chains.[5][2]
- as distance from an object decreases , that object will appear larger
- Violin The first makers of violins probably borrowed from various developments
of the Byzantine lira. These included the rebec;[13] the Arabic rebab; the vielle
(also known as the fidel or viuola); and the lira da braccio[11][14] The violin
in its present form emerged in early 16th-century northern Italy. The earliest
pictures of violins, albeit with three strings, are seen in northern Italy around
1530, at around the same time as the words "violino" and "vyollon" are seen in
Italian and French documents. One of the earliest explicit descriptions of the
instrument, including its tuning, is from the Epitome musical by Jambe de Fer,
published in Lyon in 1556.[15] By this time, the violin had already begun to spread
throughout Europe.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.1561600438268545
name: Pearson Cosine
- type: spearman_cosine
value: 0.22356441354815124
name: Spearman Cosine
- type: pearson_manhattan
value: 0.2216924674035587
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.24997065610359018
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.1908690981304929
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.22363767136304896
name: Spearman Euclidean
- type: pearson_dot
value: 0.15588248423807516
name: Pearson Dot
- type: spearman_dot
value: 0.22337189362164545
name: Spearman Dot
- type: pearson_max
value: 0.2216924674035587
name: Pearson Max
- type: spearman_max
value: 0.24997065610359018
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.666015625
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9797871112823486
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.504258943781942
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8929213285446167
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.357487922705314
name: Cosine Precision
- type: cosine_recall
value: 0.8554913294797688
name: Cosine Recall
- type: cosine_ap
value: 0.4008449937025217
name: Cosine Ap
- type: dot_accuracy
value: 0.666015625
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 752.6634521484375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.504258943781942
name: Dot F1
- type: dot_f1_threshold
value: 685.9220581054688
name: Dot F1 Threshold
- type: dot_precision
value: 0.357487922705314
name: Dot Precision
- type: dot_recall
value: 0.8554913294797688
name: Dot Recall
- type: dot_ap
value: 0.40071344979441287
name: Dot Ap
- type: manhattan_accuracy
value: 0.66796875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 144.52613830566406
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.5075987841945289
name: Manhattan F1
- type: manhattan_f1_threshold
value: 267.046875
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.3443298969072165
name: Manhattan Precision
- type: manhattan_recall
value: 0.9653179190751445
name: Manhattan Recall
- type: manhattan_ap
value: 0.4008700157620745
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.666015625
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 5.572628974914551
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.504258943781942
name: Euclidean F1
- type: euclidean_f1_threshold
value: 12.826179504394531
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.357487922705314
name: Euclidean Precision
- type: euclidean_recall
value: 0.8554913294797688
name: Euclidean Recall
- type: euclidean_ap
value: 0.40083962142052487
name: Euclidean Ap
- type: max_accuracy
value: 0.66796875
name: Max Accuracy
- type: max_accuracy_threshold
value: 752.6634521484375
name: Max Accuracy Threshold
- type: max_f1
value: 0.5075987841945289
name: Max F1
- type: max_f1_threshold
value: 685.9220581054688
name: Max F1 Threshold
- type: max_precision
value: 0.357487922705314
name: Max Precision
- type: max_recall
value: 0.9653179190751445
name: Max Recall
- type: max_ap
value: 0.4008700157620745
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.591796875
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9479926824569702
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6291834002677376
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7761930823326111
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.4598825831702544
name: Cosine Precision
- type: cosine_recall
value: 0.9957627118644068
name: Cosine Recall
- type: cosine_ap
value: 0.5658036772817674
name: Cosine Ap
- type: dot_accuracy
value: 0.59375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 724.091064453125
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6291834002677376
name: Dot F1
- type: dot_f1_threshold
value: 596.2498779296875
name: Dot F1 Threshold
- type: dot_precision
value: 0.4598825831702544
name: Dot Precision
- type: dot_recall
value: 0.9957627118644068
name: Dot Recall
- type: dot_ap
value: 0.5657459555147606
name: Dot Ap
- type: manhattan_accuracy
value: 0.6171875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 202.07958984375
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6291834002677376
name: Manhattan F1
- type: manhattan_f1_threshold
value: 307.9236145019531
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.4598825831702544
name: Manhattan Precision
- type: manhattan_recall
value: 0.9957627118644068
name: Manhattan Recall
- type: manhattan_ap
value: 0.5891966424964378
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.591796875
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 8.938886642456055
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6291834002677376
name: Euclidean F1
- type: euclidean_f1_threshold
value: 18.542938232421875
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.4598825831702544
name: Euclidean Precision
- type: euclidean_recall
value: 0.9957627118644068
name: Euclidean Recall
- type: euclidean_ap
value: 0.5658036772817674
name: Euclidean Ap
- type: max_accuracy
value: 0.6171875
name: Max Accuracy
- type: max_accuracy_threshold
value: 724.091064453125
name: Max Accuracy Threshold
- type: max_f1
value: 0.6291834002677376
name: Max F1
- type: max_f1_threshold
value: 596.2498779296875
name: Max F1 Threshold
- type: max_precision
value: 0.4598825831702544
name: Max Precision
- type: max_recall
value: 0.9957627118644068
name: Max Recall
- type: max_ap
value: 0.5891966424964378
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): AdvancedWeightedPooling(
(linear_cls_pj): Linear(in_features=768, out_features=768, bias=True)
(linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
(linear_mean_pj): Linear(in_features=768, out_features=768, bias=True)
(linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
(mha): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_pjCls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_pjMean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp")
# Run inference
sentences = [
'who was the first person who made the violin',
'Violin The first makers of violins probably borrowed from various developments of the Byzantine lira. These included the rebec;[13] the Arabic rebab; the vielle (also known as the fidel or viuola); and the lira da braccio[11][14] The violin in its present form emerged in early 16th-century northern Italy. The earliest pictures of violins, albeit with three strings, are seen in northern Italy around 1530, at around the same time as the words "violino" and "vyollon" are seen in Italian and French documents. One of the earliest explicit descriptions of the instrument, including its tuning, is from the Epitome musical by Jambe de Fer, published in Lyon in 1556.[15] By this time, the violin had already begun to spread throughout Europe.',
"Alice in Chains Alice in Chains is an American rock band from Seattle, Washington, formed in 1987 by guitarist and vocalist Jerry Cantrell and drummer Sean Kinney,[1] who recruited bassist Mike Starr[1] and lead vocalist Layne Staley.[1][2][3] Starr was replaced by Mike Inez in 1993.[4] After Staley's death in 2002, William DuVall joined in 2006 as co-lead vocalist and rhythm guitarist. The band took its name from Staley's previous group, the glam metal band Alice N' Chains.[5][2]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.1562 |
| **spearman_cosine** | **0.2236** |
| pearson_manhattan | 0.2217 |
| spearman_manhattan | 0.25 |
| pearson_euclidean | 0.1909 |
| spearman_euclidean | 0.2236 |
| pearson_dot | 0.1559 |
| spearman_dot | 0.2234 |
| pearson_max | 0.2217 |
| spearman_max | 0.25 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.666 |
| cosine_accuracy_threshold | 0.9798 |
| cosine_f1 | 0.5043 |
| cosine_f1_threshold | 0.8929 |
| cosine_precision | 0.3575 |
| cosine_recall | 0.8555 |
| cosine_ap | 0.4008 |
| dot_accuracy | 0.666 |
| dot_accuracy_threshold | 752.6635 |
| dot_f1 | 0.5043 |
| dot_f1_threshold | 685.9221 |
| dot_precision | 0.3575 |
| dot_recall | 0.8555 |
| dot_ap | 0.4007 |
| manhattan_accuracy | 0.668 |
| manhattan_accuracy_threshold | 144.5261 |
| manhattan_f1 | 0.5076 |
| manhattan_f1_threshold | 267.0469 |
| manhattan_precision | 0.3443 |
| manhattan_recall | 0.9653 |
| manhattan_ap | 0.4009 |
| euclidean_accuracy | 0.666 |
| euclidean_accuracy_threshold | 5.5726 |
| euclidean_f1 | 0.5043 |
| euclidean_f1_threshold | 12.8262 |
| euclidean_precision | 0.3575 |
| euclidean_recall | 0.8555 |
| euclidean_ap | 0.4008 |
| max_accuracy | 0.668 |
| max_accuracy_threshold | 752.6635 |
| max_f1 | 0.5076 |
| max_f1_threshold | 685.9221 |
| max_precision | 0.3575 |
| max_recall | 0.9653 |
| **max_ap** | **0.4009** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.5918 |
| cosine_accuracy_threshold | 0.948 |
| cosine_f1 | 0.6292 |
| cosine_f1_threshold | 0.7762 |
| cosine_precision | 0.4599 |
| cosine_recall | 0.9958 |
| cosine_ap | 0.5658 |
| dot_accuracy | 0.5938 |
| dot_accuracy_threshold | 724.0911 |
| dot_f1 | 0.6292 |
| dot_f1_threshold | 596.2499 |
| dot_precision | 0.4599 |
| dot_recall | 0.9958 |
| dot_ap | 0.5657 |
| manhattan_accuracy | 0.6172 |
| manhattan_accuracy_threshold | 202.0796 |
| manhattan_f1 | 0.6292 |
| manhattan_f1_threshold | 307.9236 |
| manhattan_precision | 0.4599 |
| manhattan_recall | 0.9958 |
| manhattan_ap | 0.5892 |
| euclidean_accuracy | 0.5918 |
| euclidean_accuracy_threshold | 8.9389 |
| euclidean_f1 | 0.6292 |
| euclidean_f1_threshold | 18.5429 |
| euclidean_precision | 0.4599 |
| euclidean_recall | 0.9958 |
| euclidean_ap | 0.5658 |
| max_accuracy | 0.6172 |
| max_accuracy_threshold | 724.0911 |
| max_f1 | 0.6292 |
| max_f1_threshold | 596.2499 |
| max_precision | 0.4599 |
| max_recall | 0.9958 |
| **max_ap** | **0.5892** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 32,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 29.3 tokens</li><li>max: 343 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 57.53 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A Slippery Dick is what type of creature?</code> | <code>The Slippery Dick (Juvenile) - Whats That Fish! Description Also known as Sand-reef Wrasses and Slippery Dick Wrasse. Found singly or in pairs or in groups constantly circling around reefs, sea grass beds and sandy areas. Colours highly variable especially between juvenile to adult. They feed on hard shell invertebrates. Length - 18cm Depth - 2-12m Widespread Western Atlantic & Caribbean Most reef fish seen by divers during the day are grazers, that cruise around just above the surface of the coral or snoop into crevices looking for algae, worms and small crustaceans. Wrasses have small protruding teeth and graze the bottom taking in a variety of snails, worms, crabs, shrimps and eggs. Any hard coats or thick shells are then ground down by their pharyngeal jaws and the delicacies inside digested. From juvenile to adult wrasses dramatically alter their colour and body shapes. Wrasses are always on the go during the day, but are the first to go to bed and the last to rise. Small wrasses dive below the sand to sleep and larger wrasses wedge themselves in crevasses. Related creatures Heads up! Many creatures change during their life. Juvenile fish become adults and some change shape or their colour. Some species change sex and others just get older. The following creature(s) are known relatives of the Slippery Dick (Juvenile). Click the image(s) to explore further or hover over to get a better view! Slippery Dick</code> |
| <code>e.	in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code> |
| <code>In December 2015 , the film was ranked # 192 on IMDb .</code> | <code>As of December 2015 , it is the # 192 highest rated film on IMDb.</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,664 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 28.74 tokens</li><li>max: 330 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.55 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What component of an organism, made up of many cells, in turn makes up an organ?</code> | <code></code> |
| <code>Diffusion Diffusion is a process where atoms or molecules move from areas of high concentration to areas of low concentration.</code> | <code>Diffusion is the process in which a substance naturally moves from an area of higher to lower concentration.</code> |
| <code>In the 1966 movie The Good, The Bad And The Ugly, Clint Eastwood played the Good" and Lee van Cleef played "the Bad", but who played "the Ugly"?</code> | <code>View All Photos (10) Movie Info In the last and the best installment of his so-called "Dollars" trilogy of Sergio Leone-directed "spaghetti westerns," Clint Eastwood reprised the role of a taciturn, enigmatic loner. Here he searches for a cache of stolen gold against rivals the Bad (Lee Van Cleef), a ruthless bounty hunter, and the Ugly (Eli Wallach), a Mexican bandit. Though dubbed "the Good," Eastwood's character is not much better than his opponents -- he is just smarter and shoots faster. The film's title reveals its ironic attitude toward the canonized heroes of the classical western. "The real West was the world of violence, fear, and brutal instincts," claimed Leone. "In pursuit of profit there is no such thing as good and evil, generosity or deviousness; everything depends on chance, and not the best wins but the luckiest." Immensely entertaining and beautifully shot in Techniscope by Tonino Delli Colli, the movie is a virtually definitive "spaghetti western," rivaled only by Leone's own Once Upon a Time in the West (1968). The main musical theme by Ennio Morricone hit #1 on the British pop charts. Originally released in Italy at 177 minutes, the movie was later cut for its international release. ~ Yuri German, Rovi Rating:</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:-----------------:|:---------------:|
| 0.0010 | 1 | 4.9603 | - | - | - | - |
| 0.0020 | 2 | 28.2529 | - | - | - | - |
| 0.0030 | 3 | 27.6365 | - | - | - | - |
| 0.0039 | 4 | 6.1387 | - | - | - | - |
| 0.0049 | 5 | 5.5753 | - | - | - | - |
| 0.0059 | 6 | 5.6951 | - | - | - | - |
| 0.0069 | 7 | 6.3533 | - | - | - | - |
| 0.0079 | 8 | 27.3848 | - | - | - | - |
| 0.0089 | 9 | 3.8501 | - | - | - | - |
| 0.0098 | 10 | 27.911 | - | - | - | - |
| 0.0108 | 11 | 4.9042 | - | - | - | - |
| 0.0118 | 12 | 6.8003 | - | - | - | - |
| 0.0128 | 13 | 5.7317 | - | - | - | - |
| 0.0138 | 14 | 20.261 | - | - | - | - |
| 0.0148 | 15 | 27.9051 | - | - | - | - |
| 0.0157 | 16 | 5.5959 | - | - | - | - |
| 0.0167 | 17 | 5.8052 | - | - | - | - |
| 0.0177 | 18 | 4.5088 | - | - | - | - |
| 0.0187 | 19 | 7.3472 | - | - | - | - |
| 0.0197 | 20 | 5.8668 | - | - | - | - |
| 0.0207 | 21 | 6.4083 | - | - | - | - |
| 0.0217 | 22 | 6.011 | - | - | - | - |
| 0.0226 | 23 | 5.2394 | - | - | - | - |
| 0.0236 | 24 | 4.2966 | - | - | - | - |
| 0.0246 | 25 | 26.605 | - | - | - | - |
| 0.0256 | 26 | 6.2067 | - | - | - | - |
| 0.0266 | 27 | 6.0346 | - | - | - | - |
| 0.0276 | 28 | 5.4676 | - | - | - | - |
| 0.0285 | 29 | 6.4292 | - | - | - | - |
| 0.0295 | 30 | 26.6452 | - | - | - | - |
| 0.0305 | 31 | 18.8401 | - | - | - | - |
| 0.0315 | 32 | 7.4531 | - | - | - | - |
| 0.0325 | 33 | 4.8286 | - | - | - | - |
| 0.0335 | 34 | 5.0078 | - | - | - | - |
| 0.0344 | 35 | 5.4115 | - | - | - | - |
| 0.0354 | 36 | 5.4196 | - | - | - | - |
| 0.0364 | 37 | 4.5023 | - | - | - | - |
| 0.0374 | 38 | 5.376 | - | - | - | - |
| 0.0384 | 39 | 5.2303 | - | - | - | - |
| 0.0394 | 40 | 5.6694 | - | - | - | - |
| 0.0404 | 41 | 4.7825 | - | - | - | - |
| 0.0413 | 42 | 4.6507 | - | - | - | - |
| 0.0423 | 43 | 24.2072 | - | - | - | - |
| 0.0433 | 44 | 4.9285 | - | - | - | - |
| 0.0443 | 45 | 6.326 | - | - | - | - |
| 0.0453 | 46 | 4.5724 | - | - | - | - |
| 0.0463 | 47 | 4.754 | - | - | - | - |
| 0.0472 | 48 | 5.5443 | - | - | - | - |
| 0.0482 | 49 | 4.5764 | - | - | - | - |
| 0.0492 | 50 | 5.1434 | - | - | - | - |
| 0.0502 | 51 | 22.6991 | - | - | - | - |
| 0.0512 | 52 | 5.4277 | - | - | - | - |
| 0.0522 | 53 | 5.0178 | - | - | - | - |
| 0.0531 | 54 | 4.8779 | - | - | - | - |
| 0.0541 | 55 | 4.2884 | - | - | - | - |
| 0.0551 | 56 | 16.0994 | - | - | - | - |
| 0.0561 | 57 | 21.31 | - | - | - | - |
| 0.0571 | 58 | 4.9721 | - | - | - | - |
| 0.0581 | 59 | 5.143 | - | - | - | - |
| 0.0591 | 60 | 3.5933 | - | - | - | - |
| 0.0600 | 61 | 5.2559 | - | - | - | - |
| 0.0610 | 62 | 4.0757 | - | - | - | - |
| 0.0620 | 63 | 3.6612 | - | - | - | - |
| 0.0630 | 64 | 4.7505 | - | - | - | - |
| 0.0640 | 65 | 4.1979 | - | - | - | - |
| 0.0650 | 66 | 3.9982 | - | - | - | - |
| 0.0659 | 67 | 4.7065 | - | - | - | - |
| 0.0669 | 68 | 5.3413 | - | - | - | - |
| 0.0679 | 69 | 3.6964 | - | - | - | - |
| 0.0689 | 70 | 17.8774 | - | - | - | - |
| 0.0699 | 71 | 4.8154 | - | - | - | - |
| 0.0709 | 72 | 4.8356 | - | - | - | - |
| 0.0719 | 73 | 4.568 | - | - | - | - |
| 0.0728 | 74 | 4.0898 | - | - | - | - |
| 0.0738 | 75 | 3.4502 | - | - | - | - |
| 0.0748 | 76 | 3.7733 | - | - | - | - |
| 0.0758 | 77 | 4.5204 | - | - | - | - |
| 0.0768 | 78 | 4.2526 | - | - | - | - |
| 0.0778 | 79 | 4.4398 | - | - | - | - |
| 0.0787 | 80 | 4.0988 | - | - | - | - |
| 0.0797 | 81 | 3.9704 | - | - | - | - |
| 0.0807 | 82 | 4.3343 | - | - | - | - |
| 0.0817 | 83 | 4.2587 | - | - | - | - |
| 0.0827 | 84 | 15.0149 | - | - | - | - |
| 0.0837 | 85 | 14.6599 | - | - | - | - |
| 0.0846 | 86 | 4.0623 | - | - | - | - |
| 0.0856 | 87 | 3.7597 | - | - | - | - |
| 0.0866 | 88 | 4.3433 | - | - | - | - |
| 0.0876 | 89 | 4.0287 | - | - | - | - |
| 0.0886 | 90 | 4.6257 | - | - | - | - |
| 0.0896 | 91 | 13.4689 | - | - | - | - |
| 0.0906 | 92 | 4.6583 | - | - | - | - |
| 0.0915 | 93 | 4.2682 | - | - | - | - |
| 0.0925 | 94 | 4.468 | - | - | - | - |
| 0.0935 | 95 | 3.4333 | - | - | - | - |
| 0.0945 | 96 | 12.7654 | - | - | - | - |
| 0.0955 | 97 | 3.5577 | - | - | - | - |
| 0.0965 | 98 | 12.5875 | - | - | - | - |
| 0.0974 | 99 | 4.2206 | - | - | - | - |
| 0.0984 | 100 | 3.5981 | - | - | - | - |
| 0.0994 | 101 | 3.5575 | - | - | - | - |
| 0.1004 | 102 | 4.0271 | - | - | - | - |
| 0.1014 | 103 | 4.0803 | - | - | - | - |
| 0.1024 | 104 | 4.0886 | - | - | - | - |
| 0.1033 | 105 | 4.176 | - | - | - | - |
| 0.1043 | 106 | 4.6653 | - | - | - | - |
| 0.1053 | 107 | 4.3076 | - | - | - | - |
| 0.1063 | 108 | 8.7282 | - | - | - | - |
| 0.1073 | 109 | 3.4192 | - | - | - | - |
| 0.1083 | 110 | 10.6027 | - | - | - | - |
| 0.1093 | 111 | 4.0959 | - | - | - | - |
| 0.1102 | 112 | 4.2785 | - | - | - | - |
| 0.1112 | 113 | 3.9945 | - | - | - | - |
| 0.1122 | 114 | 10.0652 | - | - | - | - |
| 0.1132 | 115 | 3.8621 | - | - | - | - |
| 0.1142 | 116 | 4.3975 | - | - | - | - |
| 0.1152 | 117 | 9.7899 | - | - | - | - |
| 0.1161 | 118 | 4.3812 | - | - | - | - |
| 0.1171 | 119 | 3.8715 | - | - | - | - |
| 0.1181 | 120 | 3.8327 | - | - | - | - |
| 0.1191 | 121 | 3.5103 | - | - | - | - |
| 0.1201 | 122 | 9.3158 | - | - | - | - |
| 0.1211 | 123 | 3.7201 | - | - | - | - |
| 0.1220 | 124 | 3.4311 | - | - | - | - |
| 0.1230 | 125 | 3.7946 | - | - | - | - |
| 0.1240 | 126 | 4.0456 | - | - | - | - |
| 0.125 | 127 | 3.482 | - | - | - | - |
| 0.1260 | 128 | 3.1901 | - | - | - | - |
| 0.1270 | 129 | 3.414 | - | - | - | - |
| 0.1280 | 130 | 3.4967 | - | - | - | - |
| 0.1289 | 131 | 3.6594 | - | - | - | - |
| 0.1299 | 132 | 8.066 | - | - | - | - |
| 0.1309 | 133 | 3.7872 | - | - | - | - |
| 0.1319 | 134 | 4.0023 | - | - | - | - |
| 0.1329 | 135 | 3.7728 | - | - | - | - |
| 0.1339 | 136 | 3.1893 | - | - | - | - |
| 0.1348 | 137 | 3.3635 | - | - | - | - |
| 0.1358 | 138 | 4.0195 | - | - | - | - |
| 0.1368 | 139 | 4.1097 | - | - | - | - |
| 0.1378 | 140 | 3.7903 | - | - | - | - |
| 0.1388 | 141 | 3.5748 | - | - | - | - |
| 0.1398 | 142 | 3.8104 | - | - | - | - |
| 0.1407 | 143 | 8.0411 | - | - | - | - |
| 0.1417 | 144 | 3.4819 | - | - | - | - |
| 0.1427 | 145 | 3.452 | - | - | - | - |
| 0.1437 | 146 | 3.5861 | - | - | - | - |
| 0.1447 | 147 | 3.4324 | - | - | - | - |
| 0.1457 | 148 | 3.521 | - | - | - | - |
| 0.1467 | 149 | 3.8868 | - | - | - | - |
| 0.1476 | 150 | 8.1191 | - | - | - | - |
| 0.1486 | 151 | 3.6447 | - | - | - | - |
| 0.1496 | 152 | 2.9436 | - | - | - | - |
| 0.1506 | 153 | 8.1535 | 2.2032 | 0.2236 | 0.4009 | 0.5892 |
| 0.1516 | 154 | 3.9619 | - | - | - | - |
| 0.1526 | 155 | 3.1301 | - | - | - | - |
| 0.1535 | 156 | 3.0478 | - | - | - | - |
| 0.1545 | 157 | 3.2986 | - | - | - | - |
| 0.1555 | 158 | 3.2847 | - | - | - | - |
| 0.1565 | 159 | 3.6599 | - | - | - | - |
| 0.1575 | 160 | 3.2238 | - | - | - | - |
| 0.1585 | 161 | 2.8897 | - | - | - | - |
| 0.1594 | 162 | 3.9443 | - | - | - | - |
| 0.1604 | 163 | 3.3733 | - | - | - | - |
| 0.1614 | 164 | 3.7444 | - | - | - | - |
| 0.1624 | 165 | 3.4813 | - | - | - | - |
| 0.1634 | 166 | 2.6865 | - | - | - | - |
| 0.1644 | 167 | 2.7587 | - | - | - | - |
| 0.1654 | 168 | 3.3628 | - | - | - | - |
| 0.1663 | 169 | 3.0035 | - | - | - | - |
| 0.1673 | 170 | 10.1591 | - | - | - | - |
| 0.1683 | 171 | 3.5366 | - | - | - | - |
| 0.1693 | 172 | 8.4047 | - | - | - | - |
| 0.1703 | 173 | 3.8643 | - | - | - | - |
| 0.1713 | 174 | 3.3529 | - | - | - | - |
| 0.1722 | 175 | 3.7143 | - | - | - | - |
| 0.1732 | 176 | 3.3323 | - | - | - | - |
| 0.1742 | 177 | 3.1206 | - | - | - | - |
| 0.1752 | 178 | 3.1348 | - | - | - | - |
| 0.1762 | 179 | 7.6011 | - | - | - | - |
| 0.1772 | 180 | 3.7025 | - | - | - | - |
| 0.1781 | 181 | 10.5662 | - | - | - | - |
| 0.1791 | 182 | 8.966 | - | - | - | - |
| 0.1801 | 183 | 9.426 | - | - | - | - |
| 0.1811 | 184 | 3.0025 | - | - | - | - |
| 0.1821 | 185 | 7.0984 | - | - | - | - |
| 0.1831 | 186 | 7.3808 | - | - | - | - |
| 0.1841 | 187 | 2.8657 | - | - | - | - |
| 0.1850 | 188 | 6.5636 | - | - | - | - |
| 0.1860 | 189 | 3.4702 | - | - | - | - |
| 0.1870 | 190 | 5.9302 | - | - | - | - |
| 0.1880 | 191 | 3.2406 | - | - | - | - |
| 0.1890 | 192 | 3.4459 | - | - | - | - |
| 0.1900 | 193 | 5.269 | - | - | - | - |
| 0.1909 | 194 | 4.8605 | - | - | - | - |
| 0.1919 | 195 | 2.9891 | - | - | - | - |
| 0.1929 | 196 | 3.6681 | - | - | - | - |
| 0.1939 | 197 | 3.1589 | - | - | - | - |
| 0.1949 | 198 | 3.1835 | - | - | - | - |
| 0.1959 | 199 | 3.7561 | - | - | - | - |
| 0.1969 | 200 | 4.0891 | - | - | - | - |
| 0.1978 | 201 | 3.563 | - | - | - | - |
| 0.1988 | 202 | 3.7433 | - | - | - | - |
| 0.1998 | 203 | 3.3813 | - | - | - | - |
| 0.2008 | 204 | 5.2311 | - | - | - | - |
| 0.2018 | 205 | 3.3494 | - | - | - | - |
| 0.2028 | 206 | 3.3533 | - | - | - | - |
| 0.2037 | 207 | 3.688 | - | - | - | - |
| 0.2047 | 208 | 3.5342 | - | - | - | - |
| 0.2057 | 209 | 4.9381 | - | - | - | - |
| 0.2067 | 210 | 3.1839 | - | - | - | - |
| 0.2077 | 211 | 3.0465 | - | - | - | - |
| 0.2087 | 212 | 3.1232 | - | - | - | - |
| 0.2096 | 213 | 4.6297 | - | - | - | - |
| 0.2106 | 214 | 2.9834 | - | - | - | - |
| 0.2116 | 215 | 4.2231 | - | - | - | - |
| 0.2126 | 216 | 3.1458 | - | - | - | - |
| 0.2136 | 217 | 3.2525 | - | - | - | - |
| 0.2146 | 218 | 3.5971 | - | - | - | - |
| 0.2156 | 219 | 3.5616 | - | - | - | - |
| 0.2165 | 220 | 3.2378 | - | - | - | - |
| 0.2175 | 221 | 2.9075 | - | - | - | - |
| 0.2185 | 222 | 3.0391 | - | - | - | - |
| 0.2195 | 223 | 3.5573 | - | - | - | - |
| 0.2205 | 224 | 3.2092 | - | - | - | - |
| 0.2215 | 225 | 3.2646 | - | - | - | - |
| 0.2224 | 226 | 3.0886 | - | - | - | - |
| 0.2234 | 227 | 3.5241 | - | - | - | - |
| 0.2244 | 228 | 3.0111 | - | - | - | - |
| 0.2254 | 229 | 3.707 | - | - | - | - |
| 0.2264 | 230 | 5.3822 | - | - | - | - |
| 0.2274 | 231 | 3.2646 | - | - | - | - |
| 0.2283 | 232 | 2.7021 | - | - | - | - |
| 0.2293 | 233 | 3.5131 | - | - | - | - |
| 0.2303 | 234 | 3.103 | - | - | - | - |
| 0.2313 | 235 | 2.9535 | - | - | - | - |
| 0.2323 | 236 | 2.9631 | - | - | - | - |
| 0.2333 | 237 | 2.8068 | - | - | - | - |
| 0.2343 | 238 | 3.4251 | - | - | - | - |
| 0.2352 | 239 | 2.8495 | - | - | - | - |
| 0.2362 | 240 | 2.9972 | - | - | - | - |
| 0.2372 | 241 | 3.3509 | - | - | - | - |
| 0.2382 | 242 | 2.9234 | - | - | - | - |
| 0.2392 | 243 | 2.4086 | - | - | - | - |
| 0.2402 | 244 | 3.1282 | - | - | - | - |
| 0.2411 | 245 | 2.3352 | - | - | - | - |
| 0.2421 | 246 | 2.4706 | - | - | - | - |
| 0.2431 | 247 | 3.5449 | - | - | - | - |
| 0.2441 | 248 | 2.8963 | - | - | - | - |
| 0.2451 | 249 | 2.773 | - | - | - | - |
| 0.2461 | 250 | 2.355 | - | - | - | - |
| 0.2470 | 251 | 2.656 | - | - | - | - |
| 0.2480 | 252 | 2.6221 | - | - | - | - |
| 0.2490 | 253 | 8.6739 | - | - | - | - |
| 0.25 | 254 | 10.8242 | - | - | - | - |
| 0.2510 | 255 | 2.3408 | - | - | - | - |
| 0.2520 | 256 | 2.1221 | - | - | - | - |
| 0.2530 | 257 | 3.295 | - | - | - | - |
| 0.2539 | 258 | 2.5896 | - | - | - | - |
| 0.2549 | 259 | 2.1215 | - | - | - | - |
| 0.2559 | 260 | 9.4851 | - | - | - | - |
| 0.2569 | 261 | 2.1982 | - | - | - | - |
| 0.2579 | 262 | 3.0568 | - | - | - | - |
| 0.2589 | 263 | 2.6269 | - | - | - | - |
| 0.2598 | 264 | 2.4792 | - | - | - | - |
| 0.2608 | 265 | 1.9445 | - | - | - | - |
| 0.2618 | 266 | 2.4061 | - | - | - | - |
| 0.2628 | 267 | 8.3116 | - | - | - | - |
| 0.2638 | 268 | 8.0804 | - | - | - | - |
| 0.2648 | 269 | 2.1674 | - | - | - | - |
| 0.2657 | 270 | 7.1975 | - | - | - | - |
| 0.2667 | 271 | 5.9104 | - | - | - | - |
| 0.2677 | 272 | 2.498 | - | - | - | - |
| 0.2687 | 273 | 2.5249 | - | - | - | - |
| 0.2697 | 274 | 2.7152 | - | - | - | - |
| 0.2707 | 275 | 2.7904 | - | - | - | - |
| 0.2717 | 276 | 2.7745 | - | - | - | - |
| 0.2726 | 277 | 2.9741 | - | - | - | - |
| 0.2736 | 278 | 1.8215 | - | - | - | - |
| 0.2746 | 279 | 4.6844 | - | - | - | - |
| 0.2756 | 280 | 2.8613 | - | - | - | - |
| 0.2766 | 281 | 2.7147 | - | - | - | - |
| 0.2776 | 282 | 2.814 | - | - | - | - |
| 0.2785 | 283 | 2.3569 | - | - | - | - |
| 0.2795 | 284 | 2.672 | - | - | - | - |
| 0.2805 | 285 | 3.2052 | - | - | - | - |
| 0.2815 | 286 | 2.8056 | - | - | - | - |
| 0.2825 | 287 | 2.6268 | - | - | - | - |
| 0.2835 | 288 | 2.5641 | - | - | - | - |
| 0.2844 | 289 | 2.4475 | - | - | - | - |
| 0.2854 | 290 | 2.7377 | - | - | - | - |
| 0.2864 | 291 | 2.3831 | - | - | - | - |
| 0.2874 | 292 | 8.8069 | - | - | - | - |
| 0.2884 | 293 | 2.186 | - | - | - | - |
| 0.2894 | 294 | 2.3389 | - | - | - | - |
| 0.2904 | 295 | 1.9744 | - | - | - | - |
| 0.2913 | 296 | 2.4491 | - | - | - | - |
| 0.2923 | 297 | 2.5668 | - | - | - | - |
| 0.2933 | 298 | 2.1939 | - | - | - | - |
| 0.2943 | 299 | 2.2832 | - | - | - | - |
| 0.2953 | 300 | 2.7508 | - | - | - | - |
| 0.2963 | 301 | 2.5206 | - | - | - | - |
| 0.2972 | 302 | 2.3522 | - | - | - | - |
| 0.2982 | 303 | 2.7186 | - | - | - | - |
| 0.2992 | 304 | 2.1369 | - | - | - | - |
| 0.3002 | 305 | 9.7972 | - | - | - | - |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |