File size: 5,148 Bytes
ae56469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# %%
import torch
from transformers import (
    BertTokenizer,
    BertForMaskedLM,
    AutoModelForMaskedLM,
    AutoTokenizer,
    BertModel,
)
import numpy as np
import random
from itertools import islice
from torch.utils.data import Dataset, DataLoader
from torch.optim import AdamW, SGD
from tqdm import tqdm
import os


def index_to_onehot(l, length):
    # l=[1, 5], len=6 -> [0,1,0,0,0,1]
    return [1 if i in l else 0 for i in range(length)]


def get_punctuation_position(tokenized_text, tokenizer):
    # adjust comma_pos and period_pos
    count = 0
    comma_pos = []
    period_pos = []
    punctuation_removed_text = []
    comma_id = tokenizer.convert_tokens_to_ids("、")
    period_id = tokenizer.convert_tokens_to_ids("。")

    for i, c in enumerate(tokenized_text):
        if c == comma_id:
            comma_pos.append(i - count - 1)
            count += 1
        elif c == period_id:
            period_pos.append(i - count - 1)
            count += 1
        else:
            punctuation_removed_text.append(c)

    if len(punctuation_removed_text) < 512:
        punctuation_removed_text += [tokenizer.pad_token_id] * (
            512 - len(punctuation_removed_text)
        )

    return (
        torch.tensor(punctuation_removed_text),
        [
            index_to_onehot(comma_pos, 512),
            index_to_onehot(period_pos, 512),
        ],
    )


# %%
# get_punctuation_position("今日は、いい天気です。")
# # %%
# index_to_onehot([1, 2, 3, 4, 5], 7)
# tokenizer = BertTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
# tokenized_text = tokenizer(
#     "今 日 は 、 い い 天 気 で す 。",
#     max_length=512,
#     padding="max_length",
#     truncation=True,
#     return_tensors="pt",
# )
# inputs, label = get_punctuation_position(tokenized_text["input_ids"][0], tokenizer)
# print(inputs)  # ->tensor([  2, 732,  48,  12,  19,  19, 411, 343,  17,  46,   3,   0,   0,   0, ...])
# print(label)  # -> [[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...], # 点の位置(最初に[SOS]が入るため、1つずれる)
#  -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...]] # 丸の位置


# %%
class PunctuationPositionDataset(torch.utils.data.Dataset):
    def __init__(self, data, tokenizer):
        self.data = data
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data[idx]
        text = " ".join(list(text))
        inputs = self.tokenizer(
            text,
            max_length=512,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )
        # if idx % 100 == 0:
        #     print(masked_text, label)
        input_ids, label = get_punctuation_position(
            inputs["input_ids"][0], self.tokenizer
        )

        label = torch.tensor(label, dtype=torch.float32).transpose(0, 1)

        return (input_ids, inputs.attention_mask.squeeze(), label.squeeze(), text)


# %%
model_name = "tohoku-nlp/bert-base-japanese-char-v3"
tokenizer = BertTokenizer.from_pretrained(model_name)
base_model = BertModel.from_pretrained(model_name)


# %%
class punctuation_predictor(torch.nn.Module):
    def __init__(self, base_model):
        super().__init__()
        self.base_model = base_model
        self.dropout = torch.nn.Dropout(0.2)
        self.linear = torch.nn.Linear(768, 2)

    def forward(self, input_ids, attention_mask):
        last_hidden_state = self.base_model(
            input_ids=input_ids, attention_mask=attention_mask
        ).last_hidden_state
        # get last hidden state token by token and apply linear layer
        return self.linear(self.dropout(last_hidden_state))


model = punctuation_predictor(base_model)
# %%
# a = tokenizer("今 日 は い い 天 気 で す 。",max_length=512,
#             padding="max_length",
#             truncation=True,
#             return_tensors="pt",)
# %%
with open("data/train.txt", "r") as f:
    texts = f.readlines()

dataset = PunctuationPositionDataset(texts, tokenizer)
# %%
data_loader = DataLoader(
    dataset,
    batch_size=16,
    shuffle=True,
    num_workers=8,
)
# %%
# set lr to 5e-5 to base model

optimizer = AdamW(
    [
        {"params": model.base_model.parameters(), "lr": 5e-5},
        {"params": model.linear.parameters(), "lr": 1e-3},
    ],
)

criteria = torch.nn.BCEWithLogitsLoss()
# %%
model.train()
model.to("cuda")
for epoch in range(10):
    epoch_loss = 0.0
    progress_bar = tqdm(data_loader, desc=f"Epoch {epoch+1}")
    for batch in progress_bar:
        input_ids, attention_masks, labels, text = batch
        input_ids = input_ids.to("cuda")
        attention_masks = attention_masks.to("cuda")
        labels = labels.to("cuda")

        outputs = model(input_ids=input_ids, attention_mask=attention_masks)
        loss = criteria(outputs, labels)

        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        epoch_loss += loss.item()
        progress_bar.set_postfix({"loss": epoch_loss / len(data_loader)})
# %%
torch.save(model.state_dict(), "punctuation_position_model.pth")