bnightning's picture
Upload README.md with huggingface_hub
86ddf3c verified
metadata
base_model: aspire/acge_text_embedding
pipeline_tag: sentence-similarity
tags:
  - mteb
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: acge_text_embedding
    results:
      - task:
          type: STS
        dataset:
          name: MTEB AFQMC
          type: C-MTEB/AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 54.03434872650919
          - type: cos_sim_spearman
            value: 58.80730796688325
          - type: euclidean_pearson
            value: 57.47231387497989
          - type: euclidean_spearman
            value: 58.80775026351807
          - type: manhattan_pearson
            value: 57.46332720141574
          - type: manhattan_spearman
            value: 58.80196022940078
      - task:
          type: STS
        dataset:
          name: MTEB ATEC
          type: C-MTEB/ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 53.52621290548175
          - type: cos_sim_spearman
            value: 57.945227768312144
          - type: euclidean_pearson
            value: 61.17041394151802
          - type: euclidean_spearman
            value: 57.94553287835657
          - type: manhattan_pearson
            value: 61.168327500057885
          - type: manhattan_spearman
            value: 57.94477516925043
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 48.538000000000004
          - type: f1
            value: 46.59920995594044
      - task:
          type: STS
        dataset:
          name: MTEB BQ
          type: C-MTEB/BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 68.27529991817154
          - type: cos_sim_spearman
            value: 70.37095914176643
          - type: euclidean_pearson
            value: 69.42690712802727
          - type: euclidean_spearman
            value: 70.37017971889912
          - type: manhattan_pearson
            value: 69.40264877917839
          - type: manhattan_spearman
            value: 70.34786744049524
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringP2P
          type: C-MTEB/CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 47.08027536192709
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringS2S
          type: C-MTEB/CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 44.0526024940363
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv1
          type: C-MTEB/CMedQAv1-reranking
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 88.65974993133156
          - type: mrr
            value: 90.64761904761905
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv2
          type: C-MTEB/CMedQAv2-reranking
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 88.90396838907245
          - type: mrr
            value: 90.90932539682541
      - task:
          type: Retrieval
        dataset:
          name: MTEB CmedqaRetrieval
          type: C-MTEB/CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 26.875
          - type: map_at_10
            value: 39.995999999999995
          - type: map_at_100
            value: 41.899
          - type: map_at_1000
            value: 42
          - type: map_at_3
            value: 35.414
          - type: map_at_5
            value: 38.019
          - type: mrr_at_1
            value: 40.635
          - type: mrr_at_10
            value: 48.827
          - type: mrr_at_100
            value: 49.805
          - type: mrr_at_1000
            value: 49.845
          - type: mrr_at_3
            value: 46.145
          - type: mrr_at_5
            value: 47.693999999999996
          - type: ndcg_at_1
            value: 40.635
          - type: ndcg_at_10
            value: 46.78
          - type: ndcg_at_100
            value: 53.986999999999995
          - type: ndcg_at_1000
            value: 55.684
          - type: ndcg_at_3
            value: 41.018
          - type: ndcg_at_5
            value: 43.559
          - type: precision_at_1
            value: 40.635
          - type: precision_at_10
            value: 10.427999999999999
          - type: precision_at_100
            value: 1.625
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.139000000000003
          - type: precision_at_5
            value: 17.004
          - type: recall_at_1
            value: 26.875
          - type: recall_at_10
            value: 57.887
          - type: recall_at_100
            value: 87.408
          - type: recall_at_1000
            value: 98.721
          - type: recall_at_3
            value: 40.812
          - type: recall_at_5
            value: 48.397
      - task:
          type: PairClassification
        dataset:
          name: MTEB Cmnli
          type: C-MTEB/CMNLI
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 83.43956704750451
          - type: cos_sim_ap
            value: 90.49172854352659
          - type: cos_sim_f1
            value: 84.28475486903963
          - type: cos_sim_precision
            value: 80.84603822203135
          - type: cos_sim_recall
            value: 88.02899228431144
          - type: dot_accuracy
            value: 83.43956704750451
          - type: dot_ap
            value: 90.46317132695233
          - type: dot_f1
            value: 84.28794294628929
          - type: dot_precision
            value: 80.51948051948052
          - type: dot_recall
            value: 88.4264671498714
          - type: euclidean_accuracy
            value: 83.43956704750451
          - type: euclidean_ap
            value: 90.49171785256486
          - type: euclidean_f1
            value: 84.28235820561584
          - type: euclidean_precision
            value: 80.8022308022308
          - type: euclidean_recall
            value: 88.07575403320084
          - type: manhattan_accuracy
            value: 83.55983162958509
          - type: manhattan_ap
            value: 90.48046779812815
          - type: manhattan_f1
            value: 84.45354259069714
          - type: manhattan_precision
            value: 82.21877767936226
          - type: manhattan_recall
            value: 86.81318681318682
          - type: max_accuracy
            value: 83.55983162958509
          - type: max_ap
            value: 90.49172854352659
          - type: max_f1
            value: 84.45354259069714
      - task:
          type: Retrieval
        dataset:
          name: MTEB CovidRetrieval
          type: C-MTEB/CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 68.54599999999999
          - type: map_at_10
            value: 77.62400000000001
          - type: map_at_100
            value: 77.886
          - type: map_at_1000
            value: 77.89
          - type: map_at_3
            value: 75.966
          - type: map_at_5
            value: 76.995
          - type: mrr_at_1
            value: 68.915
          - type: mrr_at_10
            value: 77.703
          - type: mrr_at_100
            value: 77.958
          - type: mrr_at_1000
            value: 77.962
          - type: mrr_at_3
            value: 76.08
          - type: mrr_at_5
            value: 77.118
          - type: ndcg_at_1
            value: 68.809
          - type: ndcg_at_10
            value: 81.563
          - type: ndcg_at_100
            value: 82.758
          - type: ndcg_at_1000
            value: 82.864
          - type: ndcg_at_3
            value: 78.29
          - type: ndcg_at_5
            value: 80.113
          - type: precision_at_1
            value: 68.809
          - type: precision_at_10
            value: 9.463000000000001
          - type: precision_at_100
            value: 1.001
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.486
          - type: precision_at_5
            value: 18.019
          - type: recall_at_1
            value: 68.54599999999999
          - type: recall_at_10
            value: 93.625
          - type: recall_at_100
            value: 99.05199999999999
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 84.879
          - type: recall_at_5
            value: 89.252
      - task:
          type: Retrieval
        dataset:
          name: MTEB DuRetrieval
          type: C-MTEB/DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 25.653
          - type: map_at_10
            value: 79.105
          - type: map_at_100
            value: 81.902
          - type: map_at_1000
            value: 81.947
          - type: map_at_3
            value: 54.54599999999999
          - type: map_at_5
            value: 69.226
          - type: mrr_at_1
            value: 89.35
          - type: mrr_at_10
            value: 92.69
          - type: mrr_at_100
            value: 92.77
          - type: mrr_at_1000
            value: 92.774
          - type: mrr_at_3
            value: 92.425
          - type: mrr_at_5
            value: 92.575
          - type: ndcg_at_1
            value: 89.35
          - type: ndcg_at_10
            value: 86.55199999999999
          - type: ndcg_at_100
            value: 89.35300000000001
          - type: ndcg_at_1000
            value: 89.782
          - type: ndcg_at_3
            value: 85.392
          - type: ndcg_at_5
            value: 84.5
          - type: precision_at_1
            value: 89.35
          - type: precision_at_10
            value: 41.589999999999996
          - type: precision_at_100
            value: 4.781
          - type: precision_at_1000
            value: 0.488
          - type: precision_at_3
            value: 76.683
          - type: precision_at_5
            value: 65.06
          - type: recall_at_1
            value: 25.653
          - type: recall_at_10
            value: 87.64999999999999
          - type: recall_at_100
            value: 96.858
          - type: recall_at_1000
            value: 99.13300000000001
          - type: recall_at_3
            value: 56.869
          - type: recall_at_5
            value: 74.024
      - task:
          type: Retrieval
        dataset:
          name: MTEB EcomRetrieval
          type: C-MTEB/EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 52.1
          - type: map_at_10
            value: 62.629999999999995
          - type: map_at_100
            value: 63.117000000000004
          - type: map_at_1000
            value: 63.134
          - type: map_at_3
            value: 60.267
          - type: map_at_5
            value: 61.777
          - type: mrr_at_1
            value: 52.1
          - type: mrr_at_10
            value: 62.629999999999995
          - type: mrr_at_100
            value: 63.117000000000004
          - type: mrr_at_1000
            value: 63.134
          - type: mrr_at_3
            value: 60.267
          - type: mrr_at_5
            value: 61.777
          - type: ndcg_at_1
            value: 52.1
          - type: ndcg_at_10
            value: 67.596
          - type: ndcg_at_100
            value: 69.95
          - type: ndcg_at_1000
            value: 70.33500000000001
          - type: ndcg_at_3
            value: 62.82600000000001
          - type: ndcg_at_5
            value: 65.546
          - type: precision_at_1
            value: 52.1
          - type: precision_at_10
            value: 8.309999999999999
          - type: precision_at_100
            value: 0.941
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 23.400000000000002
          - type: precision_at_5
            value: 15.36
          - type: recall_at_1
            value: 52.1
          - type: recall_at_10
            value: 83.1
          - type: recall_at_100
            value: 94.1
          - type: recall_at_1000
            value: 97
          - type: recall_at_3
            value: 70.19999999999999
          - type: recall_at_5
            value: 76.8
      - task:
          type: Classification
        dataset:
          name: MTEB IFlyTek
          type: C-MTEB/IFlyTek-classification
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 51.773759138130046
          - type: f1
            value: 40.341407912920054
      - task:
          type: Classification
        dataset:
          name: MTEB JDReview
          type: C-MTEB/JDReview-classification
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 86.69793621013133
          - type: ap
            value: 55.46718958939327
          - type: f1
            value: 81.48228915952436
      - task:
          type: STS
        dataset:
          name: MTEB LCQMC
          type: C-MTEB/LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 71.1397780205448
          - type: cos_sim_spearman
            value: 78.17368193033309
          - type: euclidean_pearson
            value: 77.4849177602368
          - type: euclidean_spearman
            value: 78.17369079663212
          - type: manhattan_pearson
            value: 77.47344305182406
          - type: manhattan_spearman
            value: 78.16454335155387
      - task:
          type: Reranking
        dataset:
          name: MTEB MMarcoReranking
          type: C-MTEB/Mmarco-reranking
          config: default
          split: dev
          revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
        metrics:
          - type: map
            value: 27.76160559006673
          - type: mrr
            value: 28.02420634920635
      - task:
          type: Retrieval
        dataset:
          name: MTEB MMarcoRetrieval
          type: C-MTEB/MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 65.661
          - type: map_at_10
            value: 74.752
          - type: map_at_100
            value: 75.091
          - type: map_at_1000
            value: 75.104
          - type: map_at_3
            value: 72.997
          - type: map_at_5
            value: 74.119
          - type: mrr_at_1
            value: 67.923
          - type: mrr_at_10
            value: 75.376
          - type: mrr_at_100
            value: 75.673
          - type: mrr_at_1000
            value: 75.685
          - type: mrr_at_3
            value: 73.856
          - type: mrr_at_5
            value: 74.82799999999999
          - type: ndcg_at_1
            value: 67.923
          - type: ndcg_at_10
            value: 78.424
          - type: ndcg_at_100
            value: 79.95100000000001
          - type: ndcg_at_1000
            value: 80.265
          - type: ndcg_at_3
            value: 75.101
          - type: ndcg_at_5
            value: 76.992
          - type: precision_at_1
            value: 67.923
          - type: precision_at_10
            value: 9.474
          - type: precision_at_100
            value: 1.023
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.319
          - type: precision_at_5
            value: 17.986
          - type: recall_at_1
            value: 65.661
          - type: recall_at_10
            value: 89.09899999999999
          - type: recall_at_100
            value: 96.023
          - type: recall_at_1000
            value: 98.455
          - type: recall_at_3
            value: 80.314
          - type: recall_at_5
            value: 84.81
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 75.86751849361131
          - type: f1
            value: 73.04918450508
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 78.4364492266308
          - type: f1
            value: 78.120686034844
      - task:
          type: Retrieval
        dataset:
          name: MTEB MedicalRetrieval
          type: C-MTEB/MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 55.00000000000001
          - type: map_at_10
            value: 61.06399999999999
          - type: map_at_100
            value: 61.622
          - type: map_at_1000
            value: 61.663000000000004
          - type: map_at_3
            value: 59.583
          - type: map_at_5
            value: 60.373
          - type: mrr_at_1
            value: 55.2
          - type: mrr_at_10
            value: 61.168
          - type: mrr_at_100
            value: 61.726000000000006
          - type: mrr_at_1000
            value: 61.767
          - type: mrr_at_3
            value: 59.683
          - type: mrr_at_5
            value: 60.492999999999995
          - type: ndcg_at_1
            value: 55.00000000000001
          - type: ndcg_at_10
            value: 64.098
          - type: ndcg_at_100
            value: 67.05
          - type: ndcg_at_1000
            value: 68.262
          - type: ndcg_at_3
            value: 61.00600000000001
          - type: ndcg_at_5
            value: 62.439
          - type: precision_at_1
            value: 55.00000000000001
          - type: precision_at_10
            value: 7.37
          - type: precision_at_100
            value: 0.881
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 21.7
          - type: precision_at_5
            value: 13.719999999999999
          - type: recall_at_1
            value: 55.00000000000001
          - type: recall_at_10
            value: 73.7
          - type: recall_at_100
            value: 88.1
          - type: recall_at_1000
            value: 97.8
          - type: recall_at_3
            value: 65.10000000000001
          - type: recall_at_5
            value: 68.60000000000001
      - task:
          type: Classification
        dataset:
          name: MTEB MultilingualSentiment
          type: C-MTEB/MultilingualSentiment-classification
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 77.52666666666667
          - type: f1
            value: 77.49784731367215
      - task:
          type: PairClassification
        dataset:
          name: MTEB Ocnli
          type: C-MTEB/OCNLI
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 81.10449377368705
          - type: cos_sim_ap
            value: 85.17742765935606
          - type: cos_sim_f1
            value: 83.00094966761633
          - type: cos_sim_precision
            value: 75.40983606557377
          - type: cos_sim_recall
            value: 92.29144667370645
          - type: dot_accuracy
            value: 81.10449377368705
          - type: dot_ap
            value: 85.17143850809614
          - type: dot_f1
            value: 83.01707779886148
          - type: dot_precision
            value: 75.36606373815677
          - type: dot_recall
            value: 92.39704329461456
          - type: euclidean_accuracy
            value: 81.10449377368705
          - type: euclidean_ap
            value: 85.17856775343333
          - type: euclidean_f1
            value: 83.00094966761633
          - type: euclidean_precision
            value: 75.40983606557377
          - type: euclidean_recall
            value: 92.29144667370645
          - type: manhattan_accuracy
            value: 81.05035192203573
          - type: manhattan_ap
            value: 85.14464459395809
          - type: manhattan_f1
            value: 82.96155671570953
          - type: manhattan_precision
            value: 75.3448275862069
          - type: manhattan_recall
            value: 92.29144667370645
          - type: max_accuracy
            value: 81.10449377368705
          - type: max_ap
            value: 85.17856775343333
          - type: max_f1
            value: 83.01707779886148
      - task:
          type: Classification
        dataset:
          name: MTEB OnlineShopping
          type: C-MTEB/OnlineShopping-classification
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 93.71000000000001
          - type: ap
            value: 91.83202232349356
          - type: f1
            value: 93.69900560334331
      - task:
          type: STS
        dataset:
          name: MTEB PAWSX
          type: C-MTEB/PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 39.175047651512415
          - type: cos_sim_spearman
            value: 45.51434675777896
          - type: euclidean_pearson
            value: 44.864110004132286
          - type: euclidean_spearman
            value: 45.516433048896076
          - type: manhattan_pearson
            value: 44.87153627706517
          - type: manhattan_spearman
            value: 45.52862617925012
      - task:
          type: STS
        dataset:
          name: MTEB QBQTC
          type: C-MTEB/QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 34.249579701429084
          - type: cos_sim_spearman
            value: 37.30903127368978
          - type: euclidean_pearson
            value: 35.129438425253355
          - type: euclidean_spearman
            value: 37.308544018709085
          - type: manhattan_pearson
            value: 35.08936153503652
          - type: manhattan_spearman
            value: 37.25582901077839
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 61.29309637460004
          - type: cos_sim_spearman
            value: 65.85136090376717
          - type: euclidean_pearson
            value: 64.04783990953557
          - type: euclidean_spearman
            value: 65.85036859610366
          - type: manhattan_pearson
            value: 63.995852552712186
          - type: manhattan_spearman
            value: 65.86508416749417
      - task:
          type: STS
        dataset:
          name: MTEB STSB
          type: C-MTEB/STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 81.5595940455587
          - type: cos_sim_spearman
            value: 82.72654634579749
          - type: euclidean_pearson
            value: 82.4892721061365
          - type: euclidean_spearman
            value: 82.72678504228253
          - type: manhattan_pearson
            value: 82.4770861422454
          - type: manhattan_spearman
            value: 82.71137469783162
      - task:
          type: Reranking
        dataset:
          name: MTEB T2Reranking
          type: C-MTEB/T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 66.6159547610527
          - type: mrr
            value: 76.35739406347057
      - task:
          type: Retrieval
        dataset:
          name: MTEB T2Retrieval
          type: C-MTEB/T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 27.878999999999998
          - type: map_at_10
            value: 77.517
          - type: map_at_100
            value: 81.139
          - type: map_at_1000
            value: 81.204
          - type: map_at_3
            value: 54.728
          - type: map_at_5
            value: 67.128
          - type: mrr_at_1
            value: 90.509
          - type: mrr_at_10
            value: 92.964
          - type: mrr_at_100
            value: 93.045
          - type: mrr_at_1000
            value: 93.048
          - type: mrr_at_3
            value: 92.551
          - type: mrr_at_5
            value: 92.81099999999999
          - type: ndcg_at_1
            value: 90.509
          - type: ndcg_at_10
            value: 85.075
          - type: ndcg_at_100
            value: 88.656
          - type: ndcg_at_1000
            value: 89.25699999999999
          - type: ndcg_at_3
            value: 86.58200000000001
          - type: ndcg_at_5
            value: 85.138
          - type: precision_at_1
            value: 90.509
          - type: precision_at_10
            value: 42.05
          - type: precision_at_100
            value: 5.013999999999999
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.551
          - type: precision_at_5
            value: 63.239999999999995
          - type: recall_at_1
            value: 27.878999999999998
          - type: recall_at_10
            value: 83.941
          - type: recall_at_100
            value: 95.568
          - type: recall_at_1000
            value: 98.55000000000001
          - type: recall_at_3
            value: 56.374
          - type: recall_at_5
            value: 70.435
      - task:
          type: Classification
        dataset:
          name: MTEB TNews
          type: C-MTEB/TNews-classification
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 53.687
          - type: f1
            value: 51.86911933364655
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringP2P
          type: C-MTEB/ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 74.65887489872564
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringS2S
          type: C-MTEB/ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 69.00410995984436
      - task:
          type: Retrieval
        dataset:
          name: MTEB VideoRetrieval
          type: C-MTEB/VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 59.4
          - type: map_at_10
            value: 69.214
          - type: map_at_100
            value: 69.72699999999999
          - type: map_at_1000
            value: 69.743
          - type: map_at_3
            value: 67.717
          - type: map_at_5
            value: 68.782
          - type: mrr_at_1
            value: 59.4
          - type: mrr_at_10
            value: 69.214
          - type: mrr_at_100
            value: 69.72699999999999
          - type: mrr_at_1000
            value: 69.743
          - type: mrr_at_3
            value: 67.717
          - type: mrr_at_5
            value: 68.782
          - type: ndcg_at_1
            value: 59.4
          - type: ndcg_at_10
            value: 73.32300000000001
          - type: ndcg_at_100
            value: 75.591
          - type: ndcg_at_1000
            value: 75.98700000000001
          - type: ndcg_at_3
            value: 70.339
          - type: ndcg_at_5
            value: 72.246
          - type: precision_at_1
            value: 59.4
          - type: precision_at_10
            value: 8.59
          - type: precision_at_100
            value: 0.96
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.967000000000002
          - type: precision_at_5
            value: 16.5
          - type: recall_at_1
            value: 59.4
          - type: recall_at_10
            value: 85.9
          - type: recall_at_100
            value: 96
          - type: recall_at_1000
            value: 99.1
          - type: recall_at_3
            value: 77.9
          - type: recall_at_5
            value: 82.5
      - task:
          type: Classification
        dataset:
          name: MTEB Waimai
          type: C-MTEB/waimai-classification
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 88.53
          - type: ap
            value: 73.56216166534062
          - type: f1
            value: 87.06093694294485

bnightning/acge_text_embedding-Q4_K_M-GGUF

This model was converted to GGUF format from aspire/acge_text_embedding using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -c 2048