Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: aspire/acge_text_embedding
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- mteb
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- llama-cpp
|
10 |
+
- gguf-my-repo
|
11 |
+
model-index:
|
12 |
+
- name: acge_text_embedding
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: STS
|
16 |
+
dataset:
|
17 |
+
name: MTEB AFQMC
|
18 |
+
type: C-MTEB/AFQMC
|
19 |
+
config: default
|
20 |
+
split: validation
|
21 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
22 |
+
metrics:
|
23 |
+
- type: cos_sim_pearson
|
24 |
+
value: 54.03434872650919
|
25 |
+
- type: cos_sim_spearman
|
26 |
+
value: 58.80730796688325
|
27 |
+
- type: euclidean_pearson
|
28 |
+
value: 57.47231387497989
|
29 |
+
- type: euclidean_spearman
|
30 |
+
value: 58.80775026351807
|
31 |
+
- type: manhattan_pearson
|
32 |
+
value: 57.46332720141574
|
33 |
+
- type: manhattan_spearman
|
34 |
+
value: 58.80196022940078
|
35 |
+
- task:
|
36 |
+
type: STS
|
37 |
+
dataset:
|
38 |
+
name: MTEB ATEC
|
39 |
+
type: C-MTEB/ATEC
|
40 |
+
config: default
|
41 |
+
split: test
|
42 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
43 |
+
metrics:
|
44 |
+
- type: cos_sim_pearson
|
45 |
+
value: 53.52621290548175
|
46 |
+
- type: cos_sim_spearman
|
47 |
+
value: 57.945227768312144
|
48 |
+
- type: euclidean_pearson
|
49 |
+
value: 61.17041394151802
|
50 |
+
- type: euclidean_spearman
|
51 |
+
value: 57.94553287835657
|
52 |
+
- type: manhattan_pearson
|
53 |
+
value: 61.168327500057885
|
54 |
+
- type: manhattan_spearman
|
55 |
+
value: 57.94477516925043
|
56 |
+
- task:
|
57 |
+
type: Classification
|
58 |
+
dataset:
|
59 |
+
name: MTEB AmazonReviewsClassification (zh)
|
60 |
+
type: mteb/amazon_reviews_multi
|
61 |
+
config: zh
|
62 |
+
split: test
|
63 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
64 |
+
metrics:
|
65 |
+
- type: accuracy
|
66 |
+
value: 48.538000000000004
|
67 |
+
- type: f1
|
68 |
+
value: 46.59920995594044
|
69 |
+
- task:
|
70 |
+
type: STS
|
71 |
+
dataset:
|
72 |
+
name: MTEB BQ
|
73 |
+
type: C-MTEB/BQ
|
74 |
+
config: default
|
75 |
+
split: test
|
76 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
77 |
+
metrics:
|
78 |
+
- type: cos_sim_pearson
|
79 |
+
value: 68.27529991817154
|
80 |
+
- type: cos_sim_spearman
|
81 |
+
value: 70.37095914176643
|
82 |
+
- type: euclidean_pearson
|
83 |
+
value: 69.42690712802727
|
84 |
+
- type: euclidean_spearman
|
85 |
+
value: 70.37017971889912
|
86 |
+
- type: manhattan_pearson
|
87 |
+
value: 69.40264877917839
|
88 |
+
- type: manhattan_spearman
|
89 |
+
value: 70.34786744049524
|
90 |
+
- task:
|
91 |
+
type: Clustering
|
92 |
+
dataset:
|
93 |
+
name: MTEB CLSClusteringP2P
|
94 |
+
type: C-MTEB/CLSClusteringP2P
|
95 |
+
config: default
|
96 |
+
split: test
|
97 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
98 |
+
metrics:
|
99 |
+
- type: v_measure
|
100 |
+
value: 47.08027536192709
|
101 |
+
- task:
|
102 |
+
type: Clustering
|
103 |
+
dataset:
|
104 |
+
name: MTEB CLSClusteringS2S
|
105 |
+
type: C-MTEB/CLSClusteringS2S
|
106 |
+
config: default
|
107 |
+
split: test
|
108 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
109 |
+
metrics:
|
110 |
+
- type: v_measure
|
111 |
+
value: 44.0526024940363
|
112 |
+
- task:
|
113 |
+
type: Reranking
|
114 |
+
dataset:
|
115 |
+
name: MTEB CMedQAv1
|
116 |
+
type: C-MTEB/CMedQAv1-reranking
|
117 |
+
config: default
|
118 |
+
split: test
|
119 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
120 |
+
metrics:
|
121 |
+
- type: map
|
122 |
+
value: 88.65974993133156
|
123 |
+
- type: mrr
|
124 |
+
value: 90.64761904761905
|
125 |
+
- task:
|
126 |
+
type: Reranking
|
127 |
+
dataset:
|
128 |
+
name: MTEB CMedQAv2
|
129 |
+
type: C-MTEB/CMedQAv2-reranking
|
130 |
+
config: default
|
131 |
+
split: test
|
132 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
133 |
+
metrics:
|
134 |
+
- type: map
|
135 |
+
value: 88.90396838907245
|
136 |
+
- type: mrr
|
137 |
+
value: 90.90932539682541
|
138 |
+
- task:
|
139 |
+
type: Retrieval
|
140 |
+
dataset:
|
141 |
+
name: MTEB CmedqaRetrieval
|
142 |
+
type: C-MTEB/CmedqaRetrieval
|
143 |
+
config: default
|
144 |
+
split: dev
|
145 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
146 |
+
metrics:
|
147 |
+
- type: map_at_1
|
148 |
+
value: 26.875
|
149 |
+
- type: map_at_10
|
150 |
+
value: 39.995999999999995
|
151 |
+
- type: map_at_100
|
152 |
+
value: 41.899
|
153 |
+
- type: map_at_1000
|
154 |
+
value: 42.0
|
155 |
+
- type: map_at_3
|
156 |
+
value: 35.414
|
157 |
+
- type: map_at_5
|
158 |
+
value: 38.019
|
159 |
+
- type: mrr_at_1
|
160 |
+
value: 40.635
|
161 |
+
- type: mrr_at_10
|
162 |
+
value: 48.827
|
163 |
+
- type: mrr_at_100
|
164 |
+
value: 49.805
|
165 |
+
- type: mrr_at_1000
|
166 |
+
value: 49.845
|
167 |
+
- type: mrr_at_3
|
168 |
+
value: 46.145
|
169 |
+
- type: mrr_at_5
|
170 |
+
value: 47.693999999999996
|
171 |
+
- type: ndcg_at_1
|
172 |
+
value: 40.635
|
173 |
+
- type: ndcg_at_10
|
174 |
+
value: 46.78
|
175 |
+
- type: ndcg_at_100
|
176 |
+
value: 53.986999999999995
|
177 |
+
- type: ndcg_at_1000
|
178 |
+
value: 55.684
|
179 |
+
- type: ndcg_at_3
|
180 |
+
value: 41.018
|
181 |
+
- type: ndcg_at_5
|
182 |
+
value: 43.559
|
183 |
+
- type: precision_at_1
|
184 |
+
value: 40.635
|
185 |
+
- type: precision_at_10
|
186 |
+
value: 10.427999999999999
|
187 |
+
- type: precision_at_100
|
188 |
+
value: 1.625
|
189 |
+
- type: precision_at_1000
|
190 |
+
value: 0.184
|
191 |
+
- type: precision_at_3
|
192 |
+
value: 23.139000000000003
|
193 |
+
- type: precision_at_5
|
194 |
+
value: 17.004
|
195 |
+
- type: recall_at_1
|
196 |
+
value: 26.875
|
197 |
+
- type: recall_at_10
|
198 |
+
value: 57.887
|
199 |
+
- type: recall_at_100
|
200 |
+
value: 87.408
|
201 |
+
- type: recall_at_1000
|
202 |
+
value: 98.721
|
203 |
+
- type: recall_at_3
|
204 |
+
value: 40.812
|
205 |
+
- type: recall_at_5
|
206 |
+
value: 48.397
|
207 |
+
- task:
|
208 |
+
type: PairClassification
|
209 |
+
dataset:
|
210 |
+
name: MTEB Cmnli
|
211 |
+
type: C-MTEB/CMNLI
|
212 |
+
config: default
|
213 |
+
split: validation
|
214 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
215 |
+
metrics:
|
216 |
+
- type: cos_sim_accuracy
|
217 |
+
value: 83.43956704750451
|
218 |
+
- type: cos_sim_ap
|
219 |
+
value: 90.49172854352659
|
220 |
+
- type: cos_sim_f1
|
221 |
+
value: 84.28475486903963
|
222 |
+
- type: cos_sim_precision
|
223 |
+
value: 80.84603822203135
|
224 |
+
- type: cos_sim_recall
|
225 |
+
value: 88.02899228431144
|
226 |
+
- type: dot_accuracy
|
227 |
+
value: 83.43956704750451
|
228 |
+
- type: dot_ap
|
229 |
+
value: 90.46317132695233
|
230 |
+
- type: dot_f1
|
231 |
+
value: 84.28794294628929
|
232 |
+
- type: dot_precision
|
233 |
+
value: 80.51948051948052
|
234 |
+
- type: dot_recall
|
235 |
+
value: 88.4264671498714
|
236 |
+
- type: euclidean_accuracy
|
237 |
+
value: 83.43956704750451
|
238 |
+
- type: euclidean_ap
|
239 |
+
value: 90.49171785256486
|
240 |
+
- type: euclidean_f1
|
241 |
+
value: 84.28235820561584
|
242 |
+
- type: euclidean_precision
|
243 |
+
value: 80.8022308022308
|
244 |
+
- type: euclidean_recall
|
245 |
+
value: 88.07575403320084
|
246 |
+
- type: manhattan_accuracy
|
247 |
+
value: 83.55983162958509
|
248 |
+
- type: manhattan_ap
|
249 |
+
value: 90.48046779812815
|
250 |
+
- type: manhattan_f1
|
251 |
+
value: 84.45354259069714
|
252 |
+
- type: manhattan_precision
|
253 |
+
value: 82.21877767936226
|
254 |
+
- type: manhattan_recall
|
255 |
+
value: 86.81318681318682
|
256 |
+
- type: max_accuracy
|
257 |
+
value: 83.55983162958509
|
258 |
+
- type: max_ap
|
259 |
+
value: 90.49172854352659
|
260 |
+
- type: max_f1
|
261 |
+
value: 84.45354259069714
|
262 |
+
- task:
|
263 |
+
type: Retrieval
|
264 |
+
dataset:
|
265 |
+
name: MTEB CovidRetrieval
|
266 |
+
type: C-MTEB/CovidRetrieval
|
267 |
+
config: default
|
268 |
+
split: dev
|
269 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
270 |
+
metrics:
|
271 |
+
- type: map_at_1
|
272 |
+
value: 68.54599999999999
|
273 |
+
- type: map_at_10
|
274 |
+
value: 77.62400000000001
|
275 |
+
- type: map_at_100
|
276 |
+
value: 77.886
|
277 |
+
- type: map_at_1000
|
278 |
+
value: 77.89
|
279 |
+
- type: map_at_3
|
280 |
+
value: 75.966
|
281 |
+
- type: map_at_5
|
282 |
+
value: 76.995
|
283 |
+
- type: mrr_at_1
|
284 |
+
value: 68.915
|
285 |
+
- type: mrr_at_10
|
286 |
+
value: 77.703
|
287 |
+
- type: mrr_at_100
|
288 |
+
value: 77.958
|
289 |
+
- type: mrr_at_1000
|
290 |
+
value: 77.962
|
291 |
+
- type: mrr_at_3
|
292 |
+
value: 76.08
|
293 |
+
- type: mrr_at_5
|
294 |
+
value: 77.118
|
295 |
+
- type: ndcg_at_1
|
296 |
+
value: 68.809
|
297 |
+
- type: ndcg_at_10
|
298 |
+
value: 81.563
|
299 |
+
- type: ndcg_at_100
|
300 |
+
value: 82.758
|
301 |
+
- type: ndcg_at_1000
|
302 |
+
value: 82.864
|
303 |
+
- type: ndcg_at_3
|
304 |
+
value: 78.29
|
305 |
+
- type: ndcg_at_5
|
306 |
+
value: 80.113
|
307 |
+
- type: precision_at_1
|
308 |
+
value: 68.809
|
309 |
+
- type: precision_at_10
|
310 |
+
value: 9.463000000000001
|
311 |
+
- type: precision_at_100
|
312 |
+
value: 1.001
|
313 |
+
- type: precision_at_1000
|
314 |
+
value: 0.101
|
315 |
+
- type: precision_at_3
|
316 |
+
value: 28.486
|
317 |
+
- type: precision_at_5
|
318 |
+
value: 18.019
|
319 |
+
- type: recall_at_1
|
320 |
+
value: 68.54599999999999
|
321 |
+
- type: recall_at_10
|
322 |
+
value: 93.625
|
323 |
+
- type: recall_at_100
|
324 |
+
value: 99.05199999999999
|
325 |
+
- type: recall_at_1000
|
326 |
+
value: 99.895
|
327 |
+
- type: recall_at_3
|
328 |
+
value: 84.879
|
329 |
+
- type: recall_at_5
|
330 |
+
value: 89.252
|
331 |
+
- task:
|
332 |
+
type: Retrieval
|
333 |
+
dataset:
|
334 |
+
name: MTEB DuRetrieval
|
335 |
+
type: C-MTEB/DuRetrieval
|
336 |
+
config: default
|
337 |
+
split: dev
|
338 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
339 |
+
metrics:
|
340 |
+
- type: map_at_1
|
341 |
+
value: 25.653
|
342 |
+
- type: map_at_10
|
343 |
+
value: 79.105
|
344 |
+
- type: map_at_100
|
345 |
+
value: 81.902
|
346 |
+
- type: map_at_1000
|
347 |
+
value: 81.947
|
348 |
+
- type: map_at_3
|
349 |
+
value: 54.54599999999999
|
350 |
+
- type: map_at_5
|
351 |
+
value: 69.226
|
352 |
+
- type: mrr_at_1
|
353 |
+
value: 89.35
|
354 |
+
- type: mrr_at_10
|
355 |
+
value: 92.69
|
356 |
+
- type: mrr_at_100
|
357 |
+
value: 92.77
|
358 |
+
- type: mrr_at_1000
|
359 |
+
value: 92.774
|
360 |
+
- type: mrr_at_3
|
361 |
+
value: 92.425
|
362 |
+
- type: mrr_at_5
|
363 |
+
value: 92.575
|
364 |
+
- type: ndcg_at_1
|
365 |
+
value: 89.35
|
366 |
+
- type: ndcg_at_10
|
367 |
+
value: 86.55199999999999
|
368 |
+
- type: ndcg_at_100
|
369 |
+
value: 89.35300000000001
|
370 |
+
- type: ndcg_at_1000
|
371 |
+
value: 89.782
|
372 |
+
- type: ndcg_at_3
|
373 |
+
value: 85.392
|
374 |
+
- type: ndcg_at_5
|
375 |
+
value: 84.5
|
376 |
+
- type: precision_at_1
|
377 |
+
value: 89.35
|
378 |
+
- type: precision_at_10
|
379 |
+
value: 41.589999999999996
|
380 |
+
- type: precision_at_100
|
381 |
+
value: 4.781
|
382 |
+
- type: precision_at_1000
|
383 |
+
value: 0.488
|
384 |
+
- type: precision_at_3
|
385 |
+
value: 76.683
|
386 |
+
- type: precision_at_5
|
387 |
+
value: 65.06
|
388 |
+
- type: recall_at_1
|
389 |
+
value: 25.653
|
390 |
+
- type: recall_at_10
|
391 |
+
value: 87.64999999999999
|
392 |
+
- type: recall_at_100
|
393 |
+
value: 96.858
|
394 |
+
- type: recall_at_1000
|
395 |
+
value: 99.13300000000001
|
396 |
+
- type: recall_at_3
|
397 |
+
value: 56.869
|
398 |
+
- type: recall_at_5
|
399 |
+
value: 74.024
|
400 |
+
- task:
|
401 |
+
type: Retrieval
|
402 |
+
dataset:
|
403 |
+
name: MTEB EcomRetrieval
|
404 |
+
type: C-MTEB/EcomRetrieval
|
405 |
+
config: default
|
406 |
+
split: dev
|
407 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
408 |
+
metrics:
|
409 |
+
- type: map_at_1
|
410 |
+
value: 52.1
|
411 |
+
- type: map_at_10
|
412 |
+
value: 62.629999999999995
|
413 |
+
- type: map_at_100
|
414 |
+
value: 63.117000000000004
|
415 |
+
- type: map_at_1000
|
416 |
+
value: 63.134
|
417 |
+
- type: map_at_3
|
418 |
+
value: 60.267
|
419 |
+
- type: map_at_5
|
420 |
+
value: 61.777
|
421 |
+
- type: mrr_at_1
|
422 |
+
value: 52.1
|
423 |
+
- type: mrr_at_10
|
424 |
+
value: 62.629999999999995
|
425 |
+
- type: mrr_at_100
|
426 |
+
value: 63.117000000000004
|
427 |
+
- type: mrr_at_1000
|
428 |
+
value: 63.134
|
429 |
+
- type: mrr_at_3
|
430 |
+
value: 60.267
|
431 |
+
- type: mrr_at_5
|
432 |
+
value: 61.777
|
433 |
+
- type: ndcg_at_1
|
434 |
+
value: 52.1
|
435 |
+
- type: ndcg_at_10
|
436 |
+
value: 67.596
|
437 |
+
- type: ndcg_at_100
|
438 |
+
value: 69.95
|
439 |
+
- type: ndcg_at_1000
|
440 |
+
value: 70.33500000000001
|
441 |
+
- type: ndcg_at_3
|
442 |
+
value: 62.82600000000001
|
443 |
+
- type: ndcg_at_5
|
444 |
+
value: 65.546
|
445 |
+
- type: precision_at_1
|
446 |
+
value: 52.1
|
447 |
+
- type: precision_at_10
|
448 |
+
value: 8.309999999999999
|
449 |
+
- type: precision_at_100
|
450 |
+
value: 0.941
|
451 |
+
- type: precision_at_1000
|
452 |
+
value: 0.097
|
453 |
+
- type: precision_at_3
|
454 |
+
value: 23.400000000000002
|
455 |
+
- type: precision_at_5
|
456 |
+
value: 15.36
|
457 |
+
- type: recall_at_1
|
458 |
+
value: 52.1
|
459 |
+
- type: recall_at_10
|
460 |
+
value: 83.1
|
461 |
+
- type: recall_at_100
|
462 |
+
value: 94.1
|
463 |
+
- type: recall_at_1000
|
464 |
+
value: 97.0
|
465 |
+
- type: recall_at_3
|
466 |
+
value: 70.19999999999999
|
467 |
+
- type: recall_at_5
|
468 |
+
value: 76.8
|
469 |
+
- task:
|
470 |
+
type: Classification
|
471 |
+
dataset:
|
472 |
+
name: MTEB IFlyTek
|
473 |
+
type: C-MTEB/IFlyTek-classification
|
474 |
+
config: default
|
475 |
+
split: validation
|
476 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
477 |
+
metrics:
|
478 |
+
- type: accuracy
|
479 |
+
value: 51.773759138130046
|
480 |
+
- type: f1
|
481 |
+
value: 40.341407912920054
|
482 |
+
- task:
|
483 |
+
type: Classification
|
484 |
+
dataset:
|
485 |
+
name: MTEB JDReview
|
486 |
+
type: C-MTEB/JDReview-classification
|
487 |
+
config: default
|
488 |
+
split: test
|
489 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
490 |
+
metrics:
|
491 |
+
- type: accuracy
|
492 |
+
value: 86.69793621013133
|
493 |
+
- type: ap
|
494 |
+
value: 55.46718958939327
|
495 |
+
- type: f1
|
496 |
+
value: 81.48228915952436
|
497 |
+
- task:
|
498 |
+
type: STS
|
499 |
+
dataset:
|
500 |
+
name: MTEB LCQMC
|
501 |
+
type: C-MTEB/LCQMC
|
502 |
+
config: default
|
503 |
+
split: test
|
504 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
505 |
+
metrics:
|
506 |
+
- type: cos_sim_pearson
|
507 |
+
value: 71.1397780205448
|
508 |
+
- type: cos_sim_spearman
|
509 |
+
value: 78.17368193033309
|
510 |
+
- type: euclidean_pearson
|
511 |
+
value: 77.4849177602368
|
512 |
+
- type: euclidean_spearman
|
513 |
+
value: 78.17369079663212
|
514 |
+
- type: manhattan_pearson
|
515 |
+
value: 77.47344305182406
|
516 |
+
- type: manhattan_spearman
|
517 |
+
value: 78.16454335155387
|
518 |
+
- task:
|
519 |
+
type: Reranking
|
520 |
+
dataset:
|
521 |
+
name: MTEB MMarcoReranking
|
522 |
+
type: C-MTEB/Mmarco-reranking
|
523 |
+
config: default
|
524 |
+
split: dev
|
525 |
+
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
526 |
+
metrics:
|
527 |
+
- type: map
|
528 |
+
value: 27.76160559006673
|
529 |
+
- type: mrr
|
530 |
+
value: 28.02420634920635
|
531 |
+
- task:
|
532 |
+
type: Retrieval
|
533 |
+
dataset:
|
534 |
+
name: MTEB MMarcoRetrieval
|
535 |
+
type: C-MTEB/MMarcoRetrieval
|
536 |
+
config: default
|
537 |
+
split: dev
|
538 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
539 |
+
metrics:
|
540 |
+
- type: map_at_1
|
541 |
+
value: 65.661
|
542 |
+
- type: map_at_10
|
543 |
+
value: 74.752
|
544 |
+
- type: map_at_100
|
545 |
+
value: 75.091
|
546 |
+
- type: map_at_1000
|
547 |
+
value: 75.104
|
548 |
+
- type: map_at_3
|
549 |
+
value: 72.997
|
550 |
+
- type: map_at_5
|
551 |
+
value: 74.119
|
552 |
+
- type: mrr_at_1
|
553 |
+
value: 67.923
|
554 |
+
- type: mrr_at_10
|
555 |
+
value: 75.376
|
556 |
+
- type: mrr_at_100
|
557 |
+
value: 75.673
|
558 |
+
- type: mrr_at_1000
|
559 |
+
value: 75.685
|
560 |
+
- type: mrr_at_3
|
561 |
+
value: 73.856
|
562 |
+
- type: mrr_at_5
|
563 |
+
value: 74.82799999999999
|
564 |
+
- type: ndcg_at_1
|
565 |
+
value: 67.923
|
566 |
+
- type: ndcg_at_10
|
567 |
+
value: 78.424
|
568 |
+
- type: ndcg_at_100
|
569 |
+
value: 79.95100000000001
|
570 |
+
- type: ndcg_at_1000
|
571 |
+
value: 80.265
|
572 |
+
- type: ndcg_at_3
|
573 |
+
value: 75.101
|
574 |
+
- type: ndcg_at_5
|
575 |
+
value: 76.992
|
576 |
+
- type: precision_at_1
|
577 |
+
value: 67.923
|
578 |
+
- type: precision_at_10
|
579 |
+
value: 9.474
|
580 |
+
- type: precision_at_100
|
581 |
+
value: 1.023
|
582 |
+
- type: precision_at_1000
|
583 |
+
value: 0.105
|
584 |
+
- type: precision_at_3
|
585 |
+
value: 28.319
|
586 |
+
- type: precision_at_5
|
587 |
+
value: 17.986
|
588 |
+
- type: recall_at_1
|
589 |
+
value: 65.661
|
590 |
+
- type: recall_at_10
|
591 |
+
value: 89.09899999999999
|
592 |
+
- type: recall_at_100
|
593 |
+
value: 96.023
|
594 |
+
- type: recall_at_1000
|
595 |
+
value: 98.455
|
596 |
+
- type: recall_at_3
|
597 |
+
value: 80.314
|
598 |
+
- type: recall_at_5
|
599 |
+
value: 84.81
|
600 |
+
- task:
|
601 |
+
type: Classification
|
602 |
+
dataset:
|
603 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
604 |
+
type: mteb/amazon_massive_intent
|
605 |
+
config: zh-CN
|
606 |
+
split: test
|
607 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
608 |
+
metrics:
|
609 |
+
- type: accuracy
|
610 |
+
value: 75.86751849361131
|
611 |
+
- type: f1
|
612 |
+
value: 73.04918450508
|
613 |
+
- task:
|
614 |
+
type: Classification
|
615 |
+
dataset:
|
616 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
617 |
+
type: mteb/amazon_massive_scenario
|
618 |
+
config: zh-CN
|
619 |
+
split: test
|
620 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
621 |
+
metrics:
|
622 |
+
- type: accuracy
|
623 |
+
value: 78.4364492266308
|
624 |
+
- type: f1
|
625 |
+
value: 78.120686034844
|
626 |
+
- task:
|
627 |
+
type: Retrieval
|
628 |
+
dataset:
|
629 |
+
name: MTEB MedicalRetrieval
|
630 |
+
type: C-MTEB/MedicalRetrieval
|
631 |
+
config: default
|
632 |
+
split: dev
|
633 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
634 |
+
metrics:
|
635 |
+
- type: map_at_1
|
636 |
+
value: 55.00000000000001
|
637 |
+
- type: map_at_10
|
638 |
+
value: 61.06399999999999
|
639 |
+
- type: map_at_100
|
640 |
+
value: 61.622
|
641 |
+
- type: map_at_1000
|
642 |
+
value: 61.663000000000004
|
643 |
+
- type: map_at_3
|
644 |
+
value: 59.583
|
645 |
+
- type: map_at_5
|
646 |
+
value: 60.373
|
647 |
+
- type: mrr_at_1
|
648 |
+
value: 55.2
|
649 |
+
- type: mrr_at_10
|
650 |
+
value: 61.168
|
651 |
+
- type: mrr_at_100
|
652 |
+
value: 61.726000000000006
|
653 |
+
- type: mrr_at_1000
|
654 |
+
value: 61.767
|
655 |
+
- type: mrr_at_3
|
656 |
+
value: 59.683
|
657 |
+
- type: mrr_at_5
|
658 |
+
value: 60.492999999999995
|
659 |
+
- type: ndcg_at_1
|
660 |
+
value: 55.00000000000001
|
661 |
+
- type: ndcg_at_10
|
662 |
+
value: 64.098
|
663 |
+
- type: ndcg_at_100
|
664 |
+
value: 67.05
|
665 |
+
- type: ndcg_at_1000
|
666 |
+
value: 68.262
|
667 |
+
- type: ndcg_at_3
|
668 |
+
value: 61.00600000000001
|
669 |
+
- type: ndcg_at_5
|
670 |
+
value: 62.439
|
671 |
+
- type: precision_at_1
|
672 |
+
value: 55.00000000000001
|
673 |
+
- type: precision_at_10
|
674 |
+
value: 7.37
|
675 |
+
- type: precision_at_100
|
676 |
+
value: 0.881
|
677 |
+
- type: precision_at_1000
|
678 |
+
value: 0.098
|
679 |
+
- type: precision_at_3
|
680 |
+
value: 21.7
|
681 |
+
- type: precision_at_5
|
682 |
+
value: 13.719999999999999
|
683 |
+
- type: recall_at_1
|
684 |
+
value: 55.00000000000001
|
685 |
+
- type: recall_at_10
|
686 |
+
value: 73.7
|
687 |
+
- type: recall_at_100
|
688 |
+
value: 88.1
|
689 |
+
- type: recall_at_1000
|
690 |
+
value: 97.8
|
691 |
+
- type: recall_at_3
|
692 |
+
value: 65.10000000000001
|
693 |
+
- type: recall_at_5
|
694 |
+
value: 68.60000000000001
|
695 |
+
- task:
|
696 |
+
type: Classification
|
697 |
+
dataset:
|
698 |
+
name: MTEB MultilingualSentiment
|
699 |
+
type: C-MTEB/MultilingualSentiment-classification
|
700 |
+
config: default
|
701 |
+
split: validation
|
702 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
703 |
+
metrics:
|
704 |
+
- type: accuracy
|
705 |
+
value: 77.52666666666667
|
706 |
+
- type: f1
|
707 |
+
value: 77.49784731367215
|
708 |
+
- task:
|
709 |
+
type: PairClassification
|
710 |
+
dataset:
|
711 |
+
name: MTEB Ocnli
|
712 |
+
type: C-MTEB/OCNLI
|
713 |
+
config: default
|
714 |
+
split: validation
|
715 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
716 |
+
metrics:
|
717 |
+
- type: cos_sim_accuracy
|
718 |
+
value: 81.10449377368705
|
719 |
+
- type: cos_sim_ap
|
720 |
+
value: 85.17742765935606
|
721 |
+
- type: cos_sim_f1
|
722 |
+
value: 83.00094966761633
|
723 |
+
- type: cos_sim_precision
|
724 |
+
value: 75.40983606557377
|
725 |
+
- type: cos_sim_recall
|
726 |
+
value: 92.29144667370645
|
727 |
+
- type: dot_accuracy
|
728 |
+
value: 81.10449377368705
|
729 |
+
- type: dot_ap
|
730 |
+
value: 85.17143850809614
|
731 |
+
- type: dot_f1
|
732 |
+
value: 83.01707779886148
|
733 |
+
- type: dot_precision
|
734 |
+
value: 75.36606373815677
|
735 |
+
- type: dot_recall
|
736 |
+
value: 92.39704329461456
|
737 |
+
- type: euclidean_accuracy
|
738 |
+
value: 81.10449377368705
|
739 |
+
- type: euclidean_ap
|
740 |
+
value: 85.17856775343333
|
741 |
+
- type: euclidean_f1
|
742 |
+
value: 83.00094966761633
|
743 |
+
- type: euclidean_precision
|
744 |
+
value: 75.40983606557377
|
745 |
+
- type: euclidean_recall
|
746 |
+
value: 92.29144667370645
|
747 |
+
- type: manhattan_accuracy
|
748 |
+
value: 81.05035192203573
|
749 |
+
- type: manhattan_ap
|
750 |
+
value: 85.14464459395809
|
751 |
+
- type: manhattan_f1
|
752 |
+
value: 82.96155671570953
|
753 |
+
- type: manhattan_precision
|
754 |
+
value: 75.3448275862069
|
755 |
+
- type: manhattan_recall
|
756 |
+
value: 92.29144667370645
|
757 |
+
- type: max_accuracy
|
758 |
+
value: 81.10449377368705
|
759 |
+
- type: max_ap
|
760 |
+
value: 85.17856775343333
|
761 |
+
- type: max_f1
|
762 |
+
value: 83.01707779886148
|
763 |
+
- task:
|
764 |
+
type: Classification
|
765 |
+
dataset:
|
766 |
+
name: MTEB OnlineShopping
|
767 |
+
type: C-MTEB/OnlineShopping-classification
|
768 |
+
config: default
|
769 |
+
split: test
|
770 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
771 |
+
metrics:
|
772 |
+
- type: accuracy
|
773 |
+
value: 93.71000000000001
|
774 |
+
- type: ap
|
775 |
+
value: 91.83202232349356
|
776 |
+
- type: f1
|
777 |
+
value: 93.69900560334331
|
778 |
+
- task:
|
779 |
+
type: STS
|
780 |
+
dataset:
|
781 |
+
name: MTEB PAWSX
|
782 |
+
type: C-MTEB/PAWSX
|
783 |
+
config: default
|
784 |
+
split: test
|
785 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
786 |
+
metrics:
|
787 |
+
- type: cos_sim_pearson
|
788 |
+
value: 39.175047651512415
|
789 |
+
- type: cos_sim_spearman
|
790 |
+
value: 45.51434675777896
|
791 |
+
- type: euclidean_pearson
|
792 |
+
value: 44.864110004132286
|
793 |
+
- type: euclidean_spearman
|
794 |
+
value: 45.516433048896076
|
795 |
+
- type: manhattan_pearson
|
796 |
+
value: 44.87153627706517
|
797 |
+
- type: manhattan_spearman
|
798 |
+
value: 45.52862617925012
|
799 |
+
- task:
|
800 |
+
type: STS
|
801 |
+
dataset:
|
802 |
+
name: MTEB QBQTC
|
803 |
+
type: C-MTEB/QBQTC
|
804 |
+
config: default
|
805 |
+
split: test
|
806 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
807 |
+
metrics:
|
808 |
+
- type: cos_sim_pearson
|
809 |
+
value: 34.249579701429084
|
810 |
+
- type: cos_sim_spearman
|
811 |
+
value: 37.30903127368978
|
812 |
+
- type: euclidean_pearson
|
813 |
+
value: 35.129438425253355
|
814 |
+
- type: euclidean_spearman
|
815 |
+
value: 37.308544018709085
|
816 |
+
- type: manhattan_pearson
|
817 |
+
value: 35.08936153503652
|
818 |
+
- type: manhattan_spearman
|
819 |
+
value: 37.25582901077839
|
820 |
+
- task:
|
821 |
+
type: STS
|
822 |
+
dataset:
|
823 |
+
name: MTEB STS22 (zh)
|
824 |
+
type: mteb/sts22-crosslingual-sts
|
825 |
+
config: zh
|
826 |
+
split: test
|
827 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
828 |
+
metrics:
|
829 |
+
- type: cos_sim_pearson
|
830 |
+
value: 61.29309637460004
|
831 |
+
- type: cos_sim_spearman
|
832 |
+
value: 65.85136090376717
|
833 |
+
- type: euclidean_pearson
|
834 |
+
value: 64.04783990953557
|
835 |
+
- type: euclidean_spearman
|
836 |
+
value: 65.85036859610366
|
837 |
+
- type: manhattan_pearson
|
838 |
+
value: 63.995852552712186
|
839 |
+
- type: manhattan_spearman
|
840 |
+
value: 65.86508416749417
|
841 |
+
- task:
|
842 |
+
type: STS
|
843 |
+
dataset:
|
844 |
+
name: MTEB STSB
|
845 |
+
type: C-MTEB/STSB
|
846 |
+
config: default
|
847 |
+
split: test
|
848 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
849 |
+
metrics:
|
850 |
+
- type: cos_sim_pearson
|
851 |
+
value: 81.5595940455587
|
852 |
+
- type: cos_sim_spearman
|
853 |
+
value: 82.72654634579749
|
854 |
+
- type: euclidean_pearson
|
855 |
+
value: 82.4892721061365
|
856 |
+
- type: euclidean_spearman
|
857 |
+
value: 82.72678504228253
|
858 |
+
- type: manhattan_pearson
|
859 |
+
value: 82.4770861422454
|
860 |
+
- type: manhattan_spearman
|
861 |
+
value: 82.71137469783162
|
862 |
+
- task:
|
863 |
+
type: Reranking
|
864 |
+
dataset:
|
865 |
+
name: MTEB T2Reranking
|
866 |
+
type: C-MTEB/T2Reranking
|
867 |
+
config: default
|
868 |
+
split: dev
|
869 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
870 |
+
metrics:
|
871 |
+
- type: map
|
872 |
+
value: 66.6159547610527
|
873 |
+
- type: mrr
|
874 |
+
value: 76.35739406347057
|
875 |
+
- task:
|
876 |
+
type: Retrieval
|
877 |
+
dataset:
|
878 |
+
name: MTEB T2Retrieval
|
879 |
+
type: C-MTEB/T2Retrieval
|
880 |
+
config: default
|
881 |
+
split: dev
|
882 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
883 |
+
metrics:
|
884 |
+
- type: map_at_1
|
885 |
+
value: 27.878999999999998
|
886 |
+
- type: map_at_10
|
887 |
+
value: 77.517
|
888 |
+
- type: map_at_100
|
889 |
+
value: 81.139
|
890 |
+
- type: map_at_1000
|
891 |
+
value: 81.204
|
892 |
+
- type: map_at_3
|
893 |
+
value: 54.728
|
894 |
+
- type: map_at_5
|
895 |
+
value: 67.128
|
896 |
+
- type: mrr_at_1
|
897 |
+
value: 90.509
|
898 |
+
- type: mrr_at_10
|
899 |
+
value: 92.964
|
900 |
+
- type: mrr_at_100
|
901 |
+
value: 93.045
|
902 |
+
- type: mrr_at_1000
|
903 |
+
value: 93.048
|
904 |
+
- type: mrr_at_3
|
905 |
+
value: 92.551
|
906 |
+
- type: mrr_at_5
|
907 |
+
value: 92.81099999999999
|
908 |
+
- type: ndcg_at_1
|
909 |
+
value: 90.509
|
910 |
+
- type: ndcg_at_10
|
911 |
+
value: 85.075
|
912 |
+
- type: ndcg_at_100
|
913 |
+
value: 88.656
|
914 |
+
- type: ndcg_at_1000
|
915 |
+
value: 89.25699999999999
|
916 |
+
- type: ndcg_at_3
|
917 |
+
value: 86.58200000000001
|
918 |
+
- type: ndcg_at_5
|
919 |
+
value: 85.138
|
920 |
+
- type: precision_at_1
|
921 |
+
value: 90.509
|
922 |
+
- type: precision_at_10
|
923 |
+
value: 42.05
|
924 |
+
- type: precision_at_100
|
925 |
+
value: 5.013999999999999
|
926 |
+
- type: precision_at_1000
|
927 |
+
value: 0.516
|
928 |
+
- type: precision_at_3
|
929 |
+
value: 75.551
|
930 |
+
- type: precision_at_5
|
931 |
+
value: 63.239999999999995
|
932 |
+
- type: recall_at_1
|
933 |
+
value: 27.878999999999998
|
934 |
+
- type: recall_at_10
|
935 |
+
value: 83.941
|
936 |
+
- type: recall_at_100
|
937 |
+
value: 95.568
|
938 |
+
- type: recall_at_1000
|
939 |
+
value: 98.55000000000001
|
940 |
+
- type: recall_at_3
|
941 |
+
value: 56.374
|
942 |
+
- type: recall_at_5
|
943 |
+
value: 70.435
|
944 |
+
- task:
|
945 |
+
type: Classification
|
946 |
+
dataset:
|
947 |
+
name: MTEB TNews
|
948 |
+
type: C-MTEB/TNews-classification
|
949 |
+
config: default
|
950 |
+
split: validation
|
951 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
952 |
+
metrics:
|
953 |
+
- type: accuracy
|
954 |
+
value: 53.687
|
955 |
+
- type: f1
|
956 |
+
value: 51.86911933364655
|
957 |
+
- task:
|
958 |
+
type: Clustering
|
959 |
+
dataset:
|
960 |
+
name: MTEB ThuNewsClusteringP2P
|
961 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
962 |
+
config: default
|
963 |
+
split: test
|
964 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
965 |
+
metrics:
|
966 |
+
- type: v_measure
|
967 |
+
value: 74.65887489872564
|
968 |
+
- task:
|
969 |
+
type: Clustering
|
970 |
+
dataset:
|
971 |
+
name: MTEB ThuNewsClusteringS2S
|
972 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
973 |
+
config: default
|
974 |
+
split: test
|
975 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
976 |
+
metrics:
|
977 |
+
- type: v_measure
|
978 |
+
value: 69.00410995984436
|
979 |
+
- task:
|
980 |
+
type: Retrieval
|
981 |
+
dataset:
|
982 |
+
name: MTEB VideoRetrieval
|
983 |
+
type: C-MTEB/VideoRetrieval
|
984 |
+
config: default
|
985 |
+
split: dev
|
986 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
987 |
+
metrics:
|
988 |
+
- type: map_at_1
|
989 |
+
value: 59.4
|
990 |
+
- type: map_at_10
|
991 |
+
value: 69.214
|
992 |
+
- type: map_at_100
|
993 |
+
value: 69.72699999999999
|
994 |
+
- type: map_at_1000
|
995 |
+
value: 69.743
|
996 |
+
- type: map_at_3
|
997 |
+
value: 67.717
|
998 |
+
- type: map_at_5
|
999 |
+
value: 68.782
|
1000 |
+
- type: mrr_at_1
|
1001 |
+
value: 59.4
|
1002 |
+
- type: mrr_at_10
|
1003 |
+
value: 69.214
|
1004 |
+
- type: mrr_at_100
|
1005 |
+
value: 69.72699999999999
|
1006 |
+
- type: mrr_at_1000
|
1007 |
+
value: 69.743
|
1008 |
+
- type: mrr_at_3
|
1009 |
+
value: 67.717
|
1010 |
+
- type: mrr_at_5
|
1011 |
+
value: 68.782
|
1012 |
+
- type: ndcg_at_1
|
1013 |
+
value: 59.4
|
1014 |
+
- type: ndcg_at_10
|
1015 |
+
value: 73.32300000000001
|
1016 |
+
- type: ndcg_at_100
|
1017 |
+
value: 75.591
|
1018 |
+
- type: ndcg_at_1000
|
1019 |
+
value: 75.98700000000001
|
1020 |
+
- type: ndcg_at_3
|
1021 |
+
value: 70.339
|
1022 |
+
- type: ndcg_at_5
|
1023 |
+
value: 72.246
|
1024 |
+
- type: precision_at_1
|
1025 |
+
value: 59.4
|
1026 |
+
- type: precision_at_10
|
1027 |
+
value: 8.59
|
1028 |
+
- type: precision_at_100
|
1029 |
+
value: 0.96
|
1030 |
+
- type: precision_at_1000
|
1031 |
+
value: 0.099
|
1032 |
+
- type: precision_at_3
|
1033 |
+
value: 25.967000000000002
|
1034 |
+
- type: precision_at_5
|
1035 |
+
value: 16.5
|
1036 |
+
- type: recall_at_1
|
1037 |
+
value: 59.4
|
1038 |
+
- type: recall_at_10
|
1039 |
+
value: 85.9
|
1040 |
+
- type: recall_at_100
|
1041 |
+
value: 96.0
|
1042 |
+
- type: recall_at_1000
|
1043 |
+
value: 99.1
|
1044 |
+
- type: recall_at_3
|
1045 |
+
value: 77.9
|
1046 |
+
- type: recall_at_5
|
1047 |
+
value: 82.5
|
1048 |
+
- task:
|
1049 |
+
type: Classification
|
1050 |
+
dataset:
|
1051 |
+
name: MTEB Waimai
|
1052 |
+
type: C-MTEB/waimai-classification
|
1053 |
+
config: default
|
1054 |
+
split: test
|
1055 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
1056 |
+
metrics:
|
1057 |
+
- type: accuracy
|
1058 |
+
value: 88.53
|
1059 |
+
- type: ap
|
1060 |
+
value: 73.56216166534062
|
1061 |
+
- type: f1
|
1062 |
+
value: 87.06093694294485
|
1063 |
+
---
|
1064 |
+
|
1065 |
+
# bnightning/acge_text_embedding-Q4_K_M-GGUF
|
1066 |
+
This model was converted to GGUF format from [`aspire/acge_text_embedding`](https://huggingface.co/aspire/acge_text_embedding) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
1067 |
+
Refer to the [original model card](https://huggingface.co/aspire/acge_text_embedding) for more details on the model.
|
1068 |
+
|
1069 |
+
## Use with llama.cpp
|
1070 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
1071 |
+
|
1072 |
+
```bash
|
1073 |
+
brew install llama.cpp
|
1074 |
+
|
1075 |
+
```
|
1076 |
+
Invoke the llama.cpp server or the CLI.
|
1077 |
+
|
1078 |
+
### CLI:
|
1079 |
+
```bash
|
1080 |
+
llama-cli --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1081 |
+
```
|
1082 |
+
|
1083 |
+
### Server:
|
1084 |
+
```bash
|
1085 |
+
llama-server --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -c 2048
|
1086 |
+
```
|
1087 |
+
|
1088 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
1089 |
+
|
1090 |
+
Step 1: Clone llama.cpp from GitHub.
|
1091 |
+
```
|
1092 |
+
git clone https://github.com/ggerganov/llama.cpp
|
1093 |
+
```
|
1094 |
+
|
1095 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
1096 |
+
```
|
1097 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
1098 |
+
```
|
1099 |
+
|
1100 |
+
Step 3: Run inference through the main binary.
|
1101 |
+
```
|
1102 |
+
./llama-cli --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1103 |
+
```
|
1104 |
+
or
|
1105 |
+
```
|
1106 |
+
./llama-server --hf-repo bnightning/acge_text_embedding-Q4_K_M-GGUF --hf-file acge_text_embedding-q4_k_m.gguf -c 2048
|
1107 |
+
```
|