File size: 6,517 Bytes
e981486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa25a23
 
 
4506963
fa25a23
 
 
 
fa0f216
fa25a23
 
 
fa0f216
 
 
fa25a23
 
 
 
 
fa0f216
fa25a23
 
 
 
fa0f216
07f8685
fa25a23
07f8685
fa25a23
 
fa0f216
fa25a23
fa0f216
fa25a23
fa0f216
fa25a23
 
 
 
fa0f216
fa25a23
 
 
 
fa0f216
 
fa25a23
 
 
 
 
 
 
 
 
fa0f216
fa25a23
fa0f216
fa25a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa0f216
fa25a23
 
 
fa0f216
fa25a23
fa0f216
fa25a23
fa0f216
fa25a23
 
 
 
fa0f216
fa25a23
fa0f216
fa25a23
fa0f216
fa25a23
fa0f216
fa25a23
 
 
fa0f216
fa25a23
fa0f216
fa25a23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
  - en
tags:
    - image-generation
    - text-to-image
    - conditional-generation
    - generative-modeling
    - image-synthesis
    - image-manipulation
    - design-prototyping
    - research
    - educational
license: mit
metrics:
  - FID
  - KID
  - HWD
  - CER
---

# VATr++ (Hugging Face Version)

This is a re-upload of the **VATr++** styled handwritten text generation model to the Hugging Face Model Hub. The original code and more detailed documentation can be found in the [VATr-pp GitHub repository](https://github.com/EDM-Research/VATr-pp). 

> **Note**: Please refer to the original repo for:
> - Full training instructions  
> - In-depth code details  
> - Extended usage and references  

This Hugging Face version allows you to directly load the **VATr++** model with `AutoModel.from_pretrained(...)` and use it in your pipelines or scripts without manually handling checkpoints. The usage differs slightly from the original GitHub repository, primarily because we leverage Hugging Face’s `transformers` interface here.

---

## Installation

1. **Create a conda environment (recommended)**:
   ```bash
   conda create --name vatr python=3.9
   conda activate vatr
   ```

2. **Install PyTorch and CUDA (if available)**:
   ```bash
   conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
   ```

3. **Install additional requirements** (including `transformers`, `opencv`, etc.):
   ```bash
   pip install transformers opencv-python
   ```
   *You may need to adjust or add libraries based on your specific environment needs.*

---

## Loading the Model

#### **VATr++**
To load the **VATr++** version:
```python
from transformers import AutoModel

model_vatr_pp = AutoModel.from_pretrained(
    "blowing-up-groundhogs/vatrpp", 
    trust_remote_code=True
)
```

#### **VATr (original)**
To load the **original VATr** model (instead of VATr++), specify the `subfolder` argument:
```python
model_vatr = AutoModel.from_pretrained(
    "blowing-up-groundhogs/vatrpp",
    subfolder="vatr", 
    trust_remote_code=True
)
```

---

## Usage (Inference Example)

Below is a **minimal** usage example that demonstrates how to:

1. Load the VATr++ model from the Hugging Face Hub.  
2. Preprocess a style image (an image of handwriting).  
3. Generate a new handwritten line of text in the style of the provided image.  

> **Important**: This model requires `trust_remote_code=True` to properly load its custom generation logic.

```python
import numpy as np
from PIL import Image
import torch
from torchvision import transforms as T
from transformers import AutoModel

# 1. Load the model (VATr++)
model = AutoModel.from_pretrained("blowing-up-groundhogs/vatrpp", trust_remote_code=True)

# 2. Helper functions to load and process style images
def load_image(img, chunk_width=192):
    # Convert to grayscale and resize to height 32
    img = img.convert("L")
    img = img.resize((img.width * 32 // img.height, 32))
    arr = np.array(img)

    # Setup transforms: invert + normalize
    transform = T.Compose([
        T.Grayscale(num_output_channels=1),
        T.ToTensor(),
        T.Normalize((0.5,), (0.5,))
    ])

    # Pad / chunk the image to a fixed width
    arr = 255 - arr
    height, width = arr.shape
    out = np.zeros((height, chunk_width), dtype="float32")
    out[:, :width] = arr[:, :chunk_width]
    out = 255 - out

    # Apply transforms
    out = transform(Image.fromarray(out.astype(np.uint8)))
    return out, width

def load_image_line(img, chunk_width=192, style_imgs_count=15):
    # Convert to grayscale and resize
    img = img.convert("L")
    img = img.resize((img.width * 32 // img.height, 32))
    arr = np.array(img)

    # Split into fixed-width chunks
    chunks = []
    for start in range(0, arr.shape[1], chunk_width):
        chunk = arr[:, start:start+chunk_width]
        chunks.append(chunk)

    # Transform each chunk
    transformed = []
    for c in chunks:
        t, _ = load_image(Image.fromarray(c), chunk_width)
        transformed.append(t)

    # If fewer than `style_imgs_count` chunks, repeat them
    while len(transformed) < style_imgs_count:
        transformed += transformed
    transformed = transformed[:style_imgs_count]

    # Combine
    return torch.cat(transformed, 0)

# 3. Load a style image of your handwriting (or any handwriting sample)
style_image_path = "path/to/your_style_image.png"
img = Image.open(style_image_path)
style_imgs = load_image_line(img)

# 4. Generate text in the style of `style_image_path`
generated_pil_image = model.generate(
    gen_text="This is a test",    # Text to generate
    style_imgs=style_imgs,        # Preprocessed style chunks
    align_words=True,             # Align words at baseline
    at_once=True,                 # Generate line at once
)

# 5. Save the generated image
generated_pil_image.save("generated_output.png")
```

- **`style_imgs`**: A batch of fixed-width image chunks from your style reference. In practice, you can supply multiple small style samples or a single line image split into chunks.
- **`gen_text`**: The text to render in the given style.
- **`align_words`** and **`at_once`**: Optional arguments that control how the text is laid out and generated.

---

## Original Repository

This model is built upon the code from [**EDM-Research/VATr-pp**](https://github.com/EDM-Research/VATr-pp), which is itself an improvement on the [VATr](https://github.com/aimagelab/VATr) project. If you need to:
- Train your own model from scratch
- Explore advanced features (like style cycle loss, punctuation modes, or advanced augmentation)
- Examine experimental details or replicate the original paper's setup

Please visit the original GitHub repos for comprehensive documentation and support files.

---

## License and Acknowledgments

- The original code and model are under the license found in [the GitHub repository](https://github.com/EDM-Research/VATr-pp).  
- All credit goes to the original authors and maintainers for creating VATr++ and releasing it openly.  
- This Hugging Face re-upload is merely intended to **simplify inference** and **model sharing**; no changes have been made to the core training code or conceptual pipeline.

---

**Enjoy generating styled handwritten text!** For any issues specific to this Hugging Face version, feel free to open an issue or pull request here. Otherwise, for deeper technical questions, please consult the original repository or its authors.