File size: 2,102 Bytes
65567ec 9a81cda 65567ec 9a81cda 65567ec 9a81cda 65567ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- accuracy
model-index:
- name: biobert-base-cased-v1.1-finetuned-pubmedqa
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.58
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-base-cased-v1.1-finetuned-pubmedqa
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2530
- Accuracy: 0.58
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 57 | 0.9477 | 0.54 |
| No log | 2.0 | 114 | 0.9100 | 0.6 |
| No log | 3.0 | 171 | 0.9887 | 0.6 |
| No log | 4.0 | 228 | 1.5443 | 0.62 |
| No log | 5.0 | 285 | 1.5868 | 0.6 |
| No log | 6.0 | 342 | 1.9679 | 0.58 |
| No log | 7.0 | 399 | 2.1031 | 0.58 |
| No log | 8.0 | 456 | 2.1613 | 0.6 |
| 0.3344 | 9.0 | 513 | 2.2219 | 0.58 |
| 0.3344 | 10.0 | 570 | 2.2530 | 0.58 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|