|
--- |
|
inference: false |
|
license: cc |
|
datasets: |
|
- VMware/open-instruct-v1-oasst-dolly-hhrlhf |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
# blackmount8/open-llama-7B-open-instruct-ct2-float16 |
|
|
|
Float16 version of [VMware/open-llama-7b-open-instruct](https://huggingface.co/VMware/open-llama-7b-open-instruct), quantized using CTranslate2. |
|
|
|
## VMware/open-llama-7B-open-instruct |
|
|
|
Instruction-tuned version of the fully trained Open LLama 7B model. The model is open for `<b>`COMMERCIAL USE `</b>`. `<br>` |
|
|
|
`<b>` NOTE `</b>` : The model was trained using the Alpaca prompt template |
|
`<b>` NOTE `</b>` : Fast tokenizer results in incorrect encoding, set the ``use_fast = False`` parameter, when instantiating the tokenizer |
|
|
|
## License |
|
|
|
- `<b>`Commercially Viable `</b>` |
|
- Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 |
|
- Language Model, ([openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)) is under apache-2.0 |
|
|
|
## Nomenclature |
|
|
|
- Model : Open-llama |
|
- Model Size: 7B parameters |
|
- Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf) |
|
|
|
## Use in CTranslate2 |
|
|
|
``` |
|
import ctranslate2 |
|
from transformers import AutoTokenizer |
|
|
|
model_name = "blackmount8/open-llama-7b-open-instruct-ct2-float16" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left") |
|
model = ctranslate2.Generator(model_name, device="auto", compute_type="float16") |
|
|
|
input_text = ["What is the meaning of stonehenge?", "Hello mate!"] |
|
|
|
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids |
|
input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids] |
|
|
|
outputs = model.generate_batch(input_tokens, max_length=128) |
|
|
|
output_tokens = [ |
|
ele.sequences_ids[0] for ele in outputs |
|
] |
|
|
|
output = tokenizer.batch_decode(output_tokens) |
|
|
|
print(output) |
|
``` |
|
|