File size: 1,068 Bytes
254d5e1 ece0d7e 254d5e1 ece0d7e 254d5e1 ece0d7e daf2509 ece0d7e 6988045 ece0d7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
language: en
license: apache-2.0
---
# 🏬QAmden🏬: Question-Answering-based Multi-DocumENt model
HF-version of the QAmden model: *Peek Across*: Improving Multi-Document Modeling via Cross-Document Question-Answering (ACL 2023).
You can use it by
```python
from transformers import (
AutoTokenizer,
LEDConfig,
LEDForConditionalGeneration,
)
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('biu-nlp/QAmden')
config=LEDConfig.from_pretrained('biu-nlp/QAmden')
model = LEDForConditionalGeneration.from_pretrained('biu-nlp/QAmden')
```
The original repo is [here](https://github.com/aviclu/peekacross).
If you find our work useful, please cite the paper as:
```python
@article{caciularu2023peekacross,
title={Peek Across: Improving Multi-Document Modeling via Cross-Document Question-Answering},
author={Caciularu, Avi and Peters, Matthew E and Goldberger, Jacob and Dagan, Ido and Cohan, Arman},
journal={The 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023},
year={2023}
}
```
|