File size: 10,815 Bytes
24abf5e
 
 
 
 
 
4cf400a
24abf5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
base_model: nvidia/mit-b0
model-index:
- name: segformer-b0-finetuned-segments-sidewalk-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-sidewalk-2

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the pixel_values, the label and the {'pixel_values': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1920x1080 at 0x7FCAFB662B60>, 'label': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1x1 at 0x7FCAFB662B30>} datasets.
It achieves the following results on the evaluation set:
- Loss: 3.5116
- Mean Iou: 0.0268
- Mean Accuracy: 0.0661
- Overall Accuracy: 0.2418
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.0351
- Accuracy Flat-sidewalk: 0.5938
- Accuracy Flat-crosswalk: 0.3236
- Accuracy Flat-cyclinglane: 0.0338
- Accuracy Flat-parkingdriveway: 0.0555
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0006
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0003
- Accuracy Vehicle-car: 0.3388
- Accuracy Vehicle-truck: 0.0016
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.2141
- Accuracy Vehicle-motorcycle: 0.0053
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0888
- Accuracy Construction-building: 0.0391
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0074
- Accuracy Construction-fenceguardrail: 0.0239
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0006
- Accuracy Object-pole: 0.0593
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0665
- Accuracy Nature-vegetation: 0.0846
- Accuracy Nature-terrain: 0.0002
- Accuracy Sky: 0.0030
- Accuracy Void-ground: 0.0635
- Accuracy Void-dynamic: 0.0004
- Accuracy Void-static: 0.0720
- Accuracy Void-unclear: 0.0022
- Iou Unlabeled: 0.0
- Iou Flat-road: 0.0297
- Iou Flat-sidewalk: 0.4826
- Iou Flat-crosswalk: 0.0624
- Iou Flat-cyclinglane: 0.0279
- Iou Flat-parkingdriveway: 0.0203
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0005
- Iou Human-person: 0.0
- Iou Human-rider: 0.0001
- Iou Vehicle-car: 0.1389
- Iou Vehicle-truck: 0.0000
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0013
- Iou Vehicle-motorcycle: 0.0007
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0004
- Iou Construction-building: 0.0383
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0057
- Iou Construction-fenceguardrail: 0.0127
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0001
- Iou Object-pole: 0.0085
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0002
- Iou Nature-vegetation: 0.0818
- Iou Nature-terrain: 0.0002
- Iou Sky: 0.0027
- Iou Void-ground: 0.0115
- Iou Void-dynamic: 0.0001
- Iou Void-static: 0.0102
- Iou Void-unclear: 0.0021

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 0.025

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 3.5028        | 0.01  | 5    | 3.5307          | 0.0194   | 0.0486        | 0.1779           | nan                | 0.0150             | 0.4721                 | 0.2351                  | 0.0249                    | 0.0409                        | nan                     | 0.0003             | 0.0                   | 0.0003               | 0.1461               | 0.0231                 | 0.0                  | 0.2163                     | 0.0047                      | 0.0                      | 0.0                      | 0.0318                      | 0.0223                         | 0.0003                     | 0.0136                     | 0.0166                               | 0.0                          | nan                          | 0.0008                       | 0.0511               | 0.0                         | 0.0665                       | 0.0261                     | 0.0005                  | 0.0010       | 0.0697               | 0.0014                | 0.0720               | 0.0020                | 0.0           | 0.0128        | 0.3979            | 0.0509             | 0.0221               | 0.0166                   | 0.0                | 0.0003        | 0.0              | 0.0001          | 0.0769          | 0.0000            | 0.0             | 0.0015                | 0.0003                 | 0.0                 | 0.0                 | 0.0001                 | 0.0219                    | 0.0001                | 0.0089                | 0.0103                          | 0.0                     | 0.0                     | 0.0001                  | 0.0070          | 0.0                    | 0.0001                  | 0.0257                | 0.0005             | 0.0009  | 0.0109          | 0.0004           | 0.0099          | 0.0019           |
| 3.3613        | 0.03  | 10   | 3.5116          | 0.0268   | 0.0661        | 0.2418           | nan                | 0.0351             | 0.5938                 | 0.3236                  | 0.0338                    | 0.0555                        | nan                     | 0.0006             | 0.0                   | 0.0003               | 0.3388               | 0.0016                 | 0.0                  | 0.2141                     | 0.0053                      | 0.0                      | 0.0                      | 0.0888                      | 0.0391                         | 0.0                        | 0.0074                     | 0.0239                               | 0.0                          | nan                          | 0.0006                       | 0.0593               | 0.0                         | 0.0665                       | 0.0846                     | 0.0002                  | 0.0030       | 0.0635               | 0.0004                | 0.0720               | 0.0022                | 0.0           | 0.0297        | 0.4826            | 0.0624             | 0.0279               | 0.0203                   | 0.0                | 0.0005        | 0.0              | 0.0001          | 0.1389          | 0.0000            | 0.0             | 0.0013                | 0.0007                 | 0.0                 | 0.0                 | 0.0004                 | 0.0383                    | 0.0                   | 0.0057                | 0.0127                          | 0.0                     | 0.0                     | 0.0001                  | 0.0085          | 0.0                    | 0.0002                  | 0.0818                | 0.0002             | 0.0027  | 0.0115          | 0.0001           | 0.0102          | 0.0021           |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3