layoutlm-funsd-tf / README.md
bigmatti's picture
Upload TFLayoutLMForTokenClassification
138b7f2
|
raw
history blame
2.69 kB
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2612
- Validation Loss: 0.6785
- Train Overall Precision: 0.7279
- Train Overall Recall: 0.8038
- Train Overall F1: 0.7639
- Train Overall Accuracy: 0.8047
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7332 | 1.4190 | 0.2417 | 0.2669 | 0.2537 | 0.5168 | 0 |
| 1.1874 | 0.9479 | 0.5511 | 0.5524 | 0.5517 | 0.7008 | 1 |
| 0.7973 | 0.7664 | 0.6409 | 0.6869 | 0.6631 | 0.7499 | 2 |
| 0.6030 | 0.6373 | 0.7067 | 0.7461 | 0.7259 | 0.7985 | 3 |
| 0.4735 | 0.6158 | 0.7182 | 0.7878 | 0.7514 | 0.8117 | 4 |
| 0.3720 | 0.6051 | 0.7093 | 0.7923 | 0.7485 | 0.8178 | 5 |
| 0.2951 | 0.6249 | 0.7227 | 0.8003 | 0.7595 | 0.8186 | 6 |
| 0.2612 | 0.6785 | 0.7279 | 0.8038 | 0.7639 | 0.8047 | 7 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0