santacoderpack / README.md
Muennighoff's picture
Update README.md
fb30a58
---
pipeline_tag: text-generation
inference: true
widget:
- text: '<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>'
example_title: Fix has_close_elements
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/commitpack-subset-cf
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: SantaCoderPack
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Python
metrics:
- name: pass@1
type: pass@1
value: 3.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix JavaScript
metrics:
- name: pass@1
type: pass@1
value: 4.9
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Java
metrics:
- name: pass@1
type: pass@1
value: 1.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Go
metrics:
- name: pass@1
type: pass@1
value: 3.6
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix C++
metrics:
- name: pass@1
type: pass@1
value: 4.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Rust
metrics:
- name: pass@1
type: pass@1
value: 1.7
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Average
metrics:
- name: pass@1
type: pass@1
value: 3.3
verified: false
---
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Training](#training)
4. [Citation](#citation)
# Model Summary
SantaCoderPack is an pre-trained model with the same architecture of SantaCoder on <th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a> using this format:
```
<commit_before>code_before<commit_msg>message<commit_after>code_after
```
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack)
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124)
- **Languages:** Python, JavaScript, Java, C++, Go, Rust
- **SantaCoderPack:**
<table>
<tr>
<th>Data</t>
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th>Model</t>
<th><a href=https://huggingface.co/bigcode/octocoder>SantaCoderPack</a></th>
<td>SantaCoderPack (1.1B parameters) pre-trained on CommitPack</td>
</tr>
<tr>
<th>Evaluation&nbsp;&nbsp;</t>
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack/HumanEvalFix</a></th>
<td>Extension of OpenAI's HumanEval to HumanEvalFix</td>
</tr>
</table>
# Use
## Intended use
The model follows instructions provided in the input. We recommend prefacing your input with "<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>"
**Feel free to share your generations in the Community tab!**
## Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/santacoderpack"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Q<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention
- **Steps:** 250k pretraining
- **Pretraining tokens:** 131B
- **Precision:** bfloat16
## Hardware
- **Pretraining:**
- **GPUs:** 32 Tesla A100
- **Training time:** 15 days
## Software
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/santacoderpack#training)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
```bibtex
@article{muennighoff2023octopack,
title={OctoPack: Instruction Tuning Code Large Language Models},
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
journal={arXiv preprint arXiv:2308.07124},
year={2023}
}
```