|
--- |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: '<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>' |
|
example_title: Fix has_close_elements |
|
group: Python |
|
license: bigcode-openrail-m |
|
datasets: |
|
- bigcode/commitpack-subset-cf |
|
metrics: |
|
- code_eval |
|
library_name: transformers |
|
tags: |
|
- code |
|
model-index: |
|
- name: SantaCoderPack |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Python |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 3.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix JavaScript |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 4.9 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Java |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 1.8 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Go |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 3.6 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix C++ |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 4.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Rust |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 1.7 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Average |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 3.3 |
|
verified: false |
|
--- |
|
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true) |
|
|
|
# Table of Contents |
|
|
|
1. [Model Summary](#model-summary) |
|
2. [Use](#use) |
|
3. [Training](#training) |
|
4. [Citation](#citation) |
|
|
|
# Model Summary |
|
|
|
SantaCoderPack is an pre-trained model with the same architecture of SantaCoder on <th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a> using this format: |
|
|
|
``` |
|
<commit_before>code_before<commit_msg>message<commit_after>code_after |
|
``` |
|
|
|
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack) |
|
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124) |
|
- **Languages:** Python, JavaScript, Java, C++, Go, Rust |
|
- **SantaCoderPack:** |
|
<table> |
|
<tr> |
|
<th>Data</t> |
|
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th> |
|
<td>4TB of GitHub commits across 350 programming languages</td> |
|
</tr> |
|
<tr> |
|
<th>Model</t> |
|
<th><a href=https://huggingface.co/bigcode/octocoder>SantaCoderPack</a></th> |
|
<td>SantaCoderPack (1.1B parameters) pre-trained on CommitPack</td> |
|
</tr> |
|
<tr> |
|
<th>Evaluation </t> |
|
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack/HumanEvalFix</a></th> |
|
<td>Extension of OpenAI's HumanEval to HumanEvalFix</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
# Use |
|
|
|
## Intended use |
|
|
|
The model follows instructions provided in the input. We recommend prefacing your input with "<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>" |
|
|
|
**Feel free to share your generations in the Community tab!** |
|
|
|
## Generation |
|
|
|
```python |
|
# pip install -q transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
checkpoint = "bigcode/santacoderpack" |
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) |
|
inputs = tokenizer.encode("Q<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>", return_tensors="pt").to(device) |
|
outputs = model.generate(inputs) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
# Training |
|
|
|
## Model |
|
|
|
- **Architecture:** GPT-2 model with multi-query attention |
|
- **Steps:** 250k pretraining |
|
- **Pretraining tokens:** 131B |
|
- **Precision:** bfloat16 |
|
|
|
## Hardware |
|
|
|
- **Pretraining:** |
|
- **GPUs:** 32 Tesla A100 |
|
- **Training time:** 15 days |
|
|
|
## Software |
|
|
|
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/santacoderpack#training) |
|
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) |
|
|
|
# Citation |
|
|
|
```bibtex |
|
@article{muennighoff2023octopack, |
|
title={OctoPack: Instruction Tuning Code Large Language Models}, |
|
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre}, |
|
journal={arXiv preprint arXiv:2308.07124}, |
|
year={2023} |
|
} |
|
``` |