|
--- |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: 'def print_hello_world():' |
|
example_title: Hello world |
|
group: Python |
|
license: bigcode-openrail-m |
|
datasets: |
|
- bigcode/commitpackft |
|
- Muennighoff/oasst-octopack |
|
metrics: |
|
- code_eval |
|
library_name: transformers |
|
tags: |
|
- code |
|
model-index: |
|
- name: OctoCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Python |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 46.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize JavaScript |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 39.2 |
|
verified: false |
|
--- |
|
|
|
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true) |
|
|
|
# OctoCoder |
|
|
|
Play with the model on the [TODO Playground](https://huggingface.co/spaces/bigcode/bigcode-playground). |
|
|
|
## Table of Contents |
|
|
|
1. [Model Summary](##model-summary) |
|
2. [Use](##use) |
|
3. [Limitations](##limitations) |
|
4. [Training](##training) |
|
5. [License](##license) |
|
6. [Citation](##citation) |
|
|
|
## Model Summary |
|
|
|
OctoCoder is ... |
|
|
|
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack) |
|
- **Paper:** [TODO]() |
|
- **Languages:** 80+ Programming languages |
|
|
|
## Use |
|
|
|
### Intended use |
|
|
|
The model follows instructions provided in the input. We recommend prefacing your input with "Question: " and finishing with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:" |
|
|
|
**Feel free to share your generations in the Community tab!** |
|
|
|
### Generation |
|
```python |
|
# pip install -q transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
checkpoint = "bigcode/octocoder" |
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) |
|
|
|
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device) |
|
outputs = model.generate(inputs) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
# Training |
|
|
|
## Model |
|
|
|
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective |
|
- **Steps:** 250k pretraining & TODO instruction tuning |
|
- **Pretraining tokens:** 1 trillion pretraining & TODO instruction tuning |
|
- **Precision:** bfloat16 |
|
|
|
## Hardware |
|
|
|
- **Pretraining:** |
|
- **GPUs:** 512 Tesla A100 |
|
- **Training time:** 24 days |
|
- **Instruction tuning:** |
|
- **GPUs:** TODO Tesla A100 |
|
- **Training time:** TODO days |
|
|
|
## Software |
|
|
|
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) & TODO |
|
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) |
|
|
|
# Citation |
|
|
|
TODO |