metadata
base_model: BAAI/bge-base-en-v1.5
datasets:
- bhlim/patentmatch_for_finetuning
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10136
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The UE sends the uplink signal including the identifier of the uplink
serving node to the downlink serving node and in this case the downlink
serving node learns the mapping relationship among the UE the uplink
serving node and the downlink serving node.The UE sends the uplink signal
including the identifier of the downlink serving node to the uplink
serving node an in thiscase the uplink serving node learns the mapping
relationship among the UE the uplink serving node and the downlink serving
node.
sentences:
- >-
A terminal for use in a wireless communication network comprising a
plurality of base stations the terminal arranged to communicate with the
network via at least two cells of a plurality of cells and to transmit a
request for uplink resources wherein the terminal is arranged to select
at least one cell from among said plurality of said cells for
transmission of said request a resource for transmission of said request
from among a plurality of resources provided by a cell and a
characteristic of a signal used to transmit said request and to perform
the selection in dependence on at least one of the reason for said
request the characteristics of an uplink channel for transmission of
said request and the preference of the network.
- >-
The electronic device of any of claims 15 wherein the processor is
further configured to check whether the specific audio data is stored at
the memory in response to a play request on the specific audio data.
- >-
The system of claim 1 or claim 2 comprising a plurality of said
radiation emitting devices.
- source_sentence: >-
Further in the example of Fig.35 the sound adjusting circuit 210 controls
the sound outputs of the first to fourth speakers 161 to 164 based on the
sound data from the first to fifth detection sensors 420 to 428 so that
the first sound corresponding to the second display image is localized in
the first area 810 where the occupant of the driver seat 13 and the
occupant of the rear seat 18 equipped with the headrest 25 are
located.Likewise the sound adjusting circuit 210 controls the sound
outputs of the first to fourth speakers 161 to 164 based on the sound data
from the first to fifth detection sensors 420 to 428 so that the second
sound corresponding to the first display image is localized in the second
area 820 where the occupant of the assistant drivers seat 12 and the
occupants of the rear seats 18 equipped with the headrests 26 and 27
respectively are located.Accordingly the occupant of the rear seat 18
equipped with the headrest 26 who is located in the crosstalk area 603 in
Fig.33 can now hear the second sound clearly.
sentences:
- >-
A gas turbine engine comprising a bladed rotor assembly 100200300400
according to any one of Claims 1 to 9.
- >-
The method of claim 1 further comprising sensing a distance between the
display and a user wherein applying the sound setting comprises applying
the sound setting based on the sensed distance between the display and
the user and the obtained curvature of the panel of the display.
- >-
A developer carrying member that is capable of carrying a developer on a
surface thereof and that supplies the developer carried on the surface
to a surface of an image bearing member when a voltage is applied
thereto comprising an elastic layer and a surface layer that covers the
elastic layer contains alumina and has a higher volume resistivity than
the elastic layer.
- source_sentence: >-
In the example of fig.1 a user 107 who arrives in the underground area 109
and who has not yet subscribed to the electronic ticket service may
subscribe to the service by connecting his Bluetooth device 107a to a
Bluetooth access point 104 of the service provider via a Bluetooth service
device 104a.At the access point 104 the customer 104 may perform a payment
transaction select a desired subscription and receive a link key.With the
link key the users Bluetooth device 107a may subsequently establish secure
Bluetooth connections with the Bluetooth transceivers 101 and 102af.
sentences:
- >-
A wireless communications device 102 for setting up a local service
session in a shortrange wireless communication network comprising means
for sending 222 a request for preconfiguration information over a
longrange network 104 to a remote destination 112 the preconfiguration
information enabling establishment of the local service session with a
proximate wireless communications device 110means for receiving 222 from
the remote destination 112 the requested preconfiguration information
wherein the requested preconfiguration information includes one or more
security keys for performing an authentication process with the
proximate wireless communications device 110 over shortrange wireless
communication means for performing 220 an authentication process for
establishing the local service session with the proximate wireless
communications device 110 over the shortrange wireless communication
using the received one or more security keys and means for establishing
220 the local service session with the proximate wireless communications
device 112 over the shortrange wireless communications after the
authentication process.
- >-
The mobile terminal any one of claims 2 to 4 wherein the controller 180
is further configured to differently process a color of the image
corresponding to the trajectory of the second touch based on a position
of the first touch.
- >-
A detergent box assembly for a washing machine comprising a detergent
box a distributor box having a front plate a rear plate and a receiving
chamber provided therebetween said receiving chamber configured to store
a laundry treat agent the distributor box being movably disposed within
the detergent box and adapted to move between an open position and a
closed position a keypress being provided in the front plate and a
driving subassembly disposed in at least one of the detergent box and
the distributor box and configured to drive the distributor box to move
from the closed position to the open position when the keypress is
pressed.
- source_sentence: >-
The step of determining may comprisemeasuring a distance between each
surrogate server and each subnetwork according to the subnetwork of the
user selecting a surrogate server with the smallest distance.
sentences:
- >-
The computer system of Claim 13 comprising a memory storing instructions
which when implemented on the one or more processors configure the
computer system to carry out the method of any one of Claims 1 to 10
- >-
A cooking oven 1 comprising a housing 2 a cooking cavity 3 formed in the
housing 2 and closable by a door 5 heating means 6 6 placed in thermal
exchange relationship with the cooking cavity 3 ventilating means placed
in the housing 2 and having one or more electrical fans 7 8 7 8 adapted
to ventilate on one or more thermally sensitive areas of the oven 1 a
control system 10 connected to the heating means 6 6 and to the
ventilating means and having a temperature detector 12 associated with
the cooking cavity 3 wherein the control system is configured to
activate and deactivate the heating means 6 6 depending on a temperature
detected by the temperature detector 12 characterized in that the
control system 10 activates and deactivates at least one of said one or
more fans 7 8 7 8 automatically together with the respective activation
and deactivation of the heating means 6 6.
- >-
The method of claim 12 wherein selecting the target control parameter
further comprises for the respective selected control parameters
comparing the initial turbine output with the predicted turbine output
while operating the selected control parameter with the adjustment of
the selected control parameter to determine an adjustment differential
and selecting the target control parameter having the target adjustment
by using the adjustment differential of the target control parameter.
- source_sentence: >-
Referring to FIG.32 a a sink device 3200 is designed to display thumbnail
images in the metadata of contents received from source devices connected
via an integrated wire interface.As mentioned in the foregoing description
if a remote controller 3250 capable of outputting a pointing signal is
situated within a region of a specific thumbnail image 3260 side
information e.g.Amanda 1st album singer.Song etc.is displayed together.
sentences:
- >-
The method of any one of claims 8 to 12 wherein the requesting for the
broadcast channel information comprises transmitting to the server image
data obtained by capturing the content being reproduced by the display
apparatus or audio data obtained by recording the content for a certain
time.
- >-
The electrode assembly of any one of the preceding claims wherein the
first electrode comprises a substrate 113 wherein the first active
material layer comprises active material layers 112 on both surfaces of
the substrate and the ceramic layer comprises ceramic material layers 50
on both surfaces of the substrate.
- >-
A method according to claim 1 wherein said topsheet assembly is a
threeply laminate comprising an acquisition layer a nonwoven layer and a
cuff assembly.
model-index:
- name: BGE base PatentMatch Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.042620363062352014
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.10142067876874507
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.14483030781373324
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23204419889502761
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.042620363062352014
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03380689292291502
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02896606156274665
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.023204419889502764
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.042620363062352014
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.10142067876874507
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14483030781373324
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23204419889502761
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.12169609468606697
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08838588842535165
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.10140867877546615
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.04222573007103394
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.09352801894238358
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.14285714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.22454617205998423
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04222573007103394
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.031176006314127862
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.028571428571428574
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02245461720599842
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04222573007103394
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09352801894238358
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14285714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.22454617205998423
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.11822400593872298
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08611580912291245
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09959411357742169
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.04025256511444357
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.09155485398579322
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.13970007892659828
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.21981057616416733
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04025256511444357
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03051828466193107
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02794001578531966
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.021981057616416732
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04025256511444357
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09155485398579322
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.13970007892659828
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.21981057616416733
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.11513294301691931
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.08350856917352567
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09631638060202527
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.037884767166535126
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.08602999210734018
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.13180741910023677
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.2079715864246251
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.037884767166535126
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.028676664035780054
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02636148382004736
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02079715864246251
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.037884767166535126
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.08602999210734018
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.13180741910023677
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2079715864246251
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10894233297304821
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.07907489883614581
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.09087791679720966
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.032754538279400155
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07419100236779795
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.11444356748224152
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.18468823993685873
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.032754538279400155
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.024730334122599312
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.022888713496448304
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.018468823993685875
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.032754538279400155
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07419100236779795
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.11444356748224152
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.18468823993685873
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0959638876946607
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06921471166735564
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08022788346205763
name: Cosine Map@100
BGE base PatentMatch Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the bhlim/patentmatch_for_finetuning dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bhlim/bge-base-patentmatch")
sentences = [
'Referring to FIG.32 a a sink device 3200 is designed to display thumbnail images in the metadata of contents received from source devices connected via an integrated wire interface.As mentioned in the foregoing description if a remote controller 3250 capable of outputting a pointing signal is situated within a region of a specific thumbnail image 3260 side information e.g.Amanda 1st album singer.Song etc.is displayed together.',
'The method of any one of claims 8 to 12 wherein the requesting for the broadcast channel information comprises transmitting to the server image data obtained by capturing the content being reproduced by the display apparatus or audio data obtained by recording the content for a certain time.',
'The electrode assembly of any one of the preceding claims wherein the first electrode comprises a substrate 113 wherein the first active material layer comprises active material layers 112 on both surfaces of the substrate and the ceramic layer comprises ceramic material layers 50 on both surfaces of the substrate.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0426 |
cosine_accuracy@3 |
0.1014 |
cosine_accuracy@5 |
0.1448 |
cosine_accuracy@10 |
0.232 |
cosine_precision@1 |
0.0426 |
cosine_precision@3 |
0.0338 |
cosine_precision@5 |
0.029 |
cosine_precision@10 |
0.0232 |
cosine_recall@1 |
0.0426 |
cosine_recall@3 |
0.1014 |
cosine_recall@5 |
0.1448 |
cosine_recall@10 |
0.232 |
cosine_ndcg@10 |
0.1217 |
cosine_mrr@10 |
0.0884 |
cosine_map@100 |
0.1014 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0422 |
cosine_accuracy@3 |
0.0935 |
cosine_accuracy@5 |
0.1429 |
cosine_accuracy@10 |
0.2245 |
cosine_precision@1 |
0.0422 |
cosine_precision@3 |
0.0312 |
cosine_precision@5 |
0.0286 |
cosine_precision@10 |
0.0225 |
cosine_recall@1 |
0.0422 |
cosine_recall@3 |
0.0935 |
cosine_recall@5 |
0.1429 |
cosine_recall@10 |
0.2245 |
cosine_ndcg@10 |
0.1182 |
cosine_mrr@10 |
0.0861 |
cosine_map@100 |
0.0996 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0403 |
cosine_accuracy@3 |
0.0916 |
cosine_accuracy@5 |
0.1397 |
cosine_accuracy@10 |
0.2198 |
cosine_precision@1 |
0.0403 |
cosine_precision@3 |
0.0305 |
cosine_precision@5 |
0.0279 |
cosine_precision@10 |
0.022 |
cosine_recall@1 |
0.0403 |
cosine_recall@3 |
0.0916 |
cosine_recall@5 |
0.1397 |
cosine_recall@10 |
0.2198 |
cosine_ndcg@10 |
0.1151 |
cosine_mrr@10 |
0.0835 |
cosine_map@100 |
0.0963 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0379 |
cosine_accuracy@3 |
0.086 |
cosine_accuracy@5 |
0.1318 |
cosine_accuracy@10 |
0.208 |
cosine_precision@1 |
0.0379 |
cosine_precision@3 |
0.0287 |
cosine_precision@5 |
0.0264 |
cosine_precision@10 |
0.0208 |
cosine_recall@1 |
0.0379 |
cosine_recall@3 |
0.086 |
cosine_recall@5 |
0.1318 |
cosine_recall@10 |
0.208 |
cosine_ndcg@10 |
0.1089 |
cosine_mrr@10 |
0.0791 |
cosine_map@100 |
0.0909 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0328 |
cosine_accuracy@3 |
0.0742 |
cosine_accuracy@5 |
0.1144 |
cosine_accuracy@10 |
0.1847 |
cosine_precision@1 |
0.0328 |
cosine_precision@3 |
0.0247 |
cosine_precision@5 |
0.0229 |
cosine_precision@10 |
0.0185 |
cosine_recall@1 |
0.0328 |
cosine_recall@3 |
0.0742 |
cosine_recall@5 |
0.1144 |
cosine_recall@10 |
0.1847 |
cosine_ndcg@10 |
0.096 |
cosine_mrr@10 |
0.0692 |
cosine_map@100 |
0.0802 |
Training Details
Training Dataset
bhlim/patentmatch_for_finetuning
- Dataset: bhlim/patentmatch_for_finetuning at 8d60f21
- Size: 10,136 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 136.61 tokens
- max: 512 tokens
|
- min: 12 tokens
- mean: 76.35 tokens
- max: 512 tokens
|
- Samples:
positive |
anchor |
Furthermore according to this liquid consuming apparatus if the decompression level acting on the liquid sensing chamber 21 of the liquid container 1 i.e.the pressure loss arising in the connecting passage between the liquid storage portion 7 and the liquid sensing chamber 21 due to the flow rate outflowing from the liquid storage portion 7 because of distension of the diaphragm pump through application of the external force when external force is applied in the direction of expansion of volume of the diaphragm pump 42 asdepicted in FIG.6 has been set to a low level if sufficient liquid is present in the liquid container 1 the liquid sensing chamber 21 will experience substantially no change in volume. |
The liquid cartridge according to any of claims 4 to 5 further comprising a ground terminal 175c 176c 177c positioned in the second line. |
It is highly desirable for tires to have good wet skid resistance low rolling resistance and good wear characteristics.It has traditionally been very difficult to improve a tires wear characteristics without sacrificing its wet skid resistance and traction characteristics.These properties depend to a great extent on the dynamic viscoelastic properties of the rubbers utilized in making the tire. |
The pneumatic tire of at least one of the previous claims wherein the rubber composition comprises from 5 to 20 phr of the oil and from 45 to 70 phr of the terpene phenol resin. |
Before setting the environment of the mobile communication terminal a user stores a multimedia message composed of different kinds of contents i.e.images sounds and texts.For example reference block 201 indicates a multimedia message composed of several images sounds and texts.The user can select an image A a sound A and a text A for environment setting elements of the mobile communication terminal from the contents of the multimedia message and construct a theme like in block 203 using the selected image A sound A and text A.The MPU 101 maps the contents of the theme to environment setting elements of the mobile communication terminal i.e.a background screen a ringtone and a user name like in block 205.The MPU 101 then sets the environment of the mobile communication terminal using the mapped elements like in block 207 thereby automatically and collectively changing the environment of the mobile communication terminal.Mapping information about mapping between the selected contents of the multimediamessage and the environment setting elements of the mobile communication terminal is stored in the flash RAM 107. |
A terminal for processing data comprising an output unit configured to output a chatting service window a receiving unit configured to receive a request for executing a chatting service and a first download request for downloading first data through the chatting service from a user and a controller configured to control to output the first data downloaded in response to the received first download request to a background screen of the chatting service window. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.5047 |
10 |
10.0459 |
- |
- |
- |
- |
- |
0.9590 |
19 |
- |
0.0849 |
0.0915 |
0.0939 |
0.0778 |
0.0966 |
1.0095 |
20 |
7.1373 |
- |
- |
- |
- |
- |
1.5142 |
30 |
5.9969 |
- |
- |
- |
- |
- |
1.9685 |
39 |
- |
0.0890 |
0.0965 |
0.1007 |
0.0795 |
0.1012 |
2.0189 |
40 |
5.2984 |
- |
- |
- |
- |
- |
2.5237 |
50 |
4.884 |
- |
- |
- |
- |
- |
2.9779 |
59 |
- |
0.091 |
0.0967 |
0.099 |
0.0801 |
0.1013 |
3.0284 |
60 |
4.6633 |
- |
- |
- |
- |
- |
3.5331 |
70 |
4.5226 |
- |
- |
- |
- |
- |
3.8360 |
76 |
- |
0.0909 |
0.0963 |
0.0996 |
0.0802 |
0.1014 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}