|
--- |
|
license: mit |
|
datasets: |
|
- Intel/orca_dpo_pairs |
|
--- |
|
|
|
## SOLAR-10B-OrcaDPO-Jawade |
|
|
|
### Overview |
|
This model card is instruction finetuned version of `upstage/SOLAR-10.7B-Instruct-v1.0` model. Trained on the Intel DPO Orca dataset using LoRA. Though it should be noted SOLAR-10.7B paper states that the |
|
original model for alignment was trained on Intel ORCA DPO pairs. Retraining using DPO and LoRA shows slight (<1%) improvement on OpenLLM Leaderboard benchmarks against `SOLAR 10.7B-Instruct` and significant over `SOLAR 10.7B` |
|
|
|
![model_card_image](SOLAR_ORCA.png) |
|
|
|
## How to Use This Model |
|
|
|
To use the model `bhavinjawade/SOLAR-10B-OrcaDPO-Jawade`, follow these steps: |
|
|
|
1. **Import and Load the Model and Tokenizer** |
|
Begin by importing the model and tokenizer. Load them using the `from_pretrained` method. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model = AutoModelForCausalLM.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade") |
|
tokenizer = AutoTokenizer.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade") |
|
``` |
|
|
|
2. **Format the Prompt** |
|
Format the chat input as a list of messages, each with a role ('system' or 'user') and content. |
|
|
|
```python |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "Is the universe real? or is it a simulation? whats your opinion?"} |
|
] |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
``` |
|
|
|
3. **Create a Pipeline** |
|
Set up a pipeline for text generation with the loaded model and tokenizer. |
|
|
|
```python |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer |
|
) |
|
``` |
|
|
|
4. **Generate Text** |
|
Use the pipeline to generate a sequence of text based on the prompt. You can adjust parameters like temperature and top_p for different styles of responses. |
|
|
|
```python |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
|
|
This setup allows you to utilize the capabilities of the **bhavinjawade/SOLAR-10B-OrcaDPO-Jawade** model for generating responses to chat inputs. |
|
|
|
### License |
|
- **Type**: MIT License |
|
- **Details**: This license permits reuse, modification, and distribution for both private and commercial purposes under the terms of the MIT License. |
|
|
|
### Model Details |
|
- **Model Name**: SOLAR-10.7B-Instruct-v1.0 |
|
- **Organization**: Upstage |
|
- **Training Dataset**: Intel/orca_dpo_pairs |
|
- **Technique Used**: LoRA (Low-Rank Adaptation) |
|
|
|
### Contact Information |
|
- https://bhavinjawade.github.io |