File size: 9,078 Bytes
d92fae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
language: en
tags:
- exbert
license: mit
datasets:
- bookcorpus
- wikipedia
---
# RoBERTa base model
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between english and English.
Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-base')
>>> unmasker("Hello I'm a <mask> model.")
[{'sequence': "<s>Hello I'm a male model.</s>",
'score': 0.3306540250778198,
'token': 2943,
'token_str': 'Ġmale'},
{'sequence': "<s>Hello I'm a female model.</s>",
'score': 0.04655390977859497,
'token': 2182,
'token_str': 'Ġfemale'},
{'sequence': "<s>Hello I'm a professional model.</s>",
'score': 0.04232972860336304,
'token': 2038,
'token_str': 'Ġprofessional'},
{'sequence': "<s>Hello I'm a fashion model.</s>",
'score': 0.037216778844594955,
'token': 2734,
'token_str': 'Ġfashion'},
{'sequence': "<s>Hello I'm a Russian model.</s>",
'score': 0.03253649175167084,
'token': 1083,
'token_str': 'ĠRussian'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = TFRobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='roberta-base')
>>> unmasker("The man worked as a <mask>.")
[{'sequence': '<s>The man worked as a mechanic.</s>',
'score': 0.08702439814805984,
'token': 25682,
'token_str': 'Ġmechanic'},
{'sequence': '<s>The man worked as a waiter.</s>',
'score': 0.0819653645157814,
'token': 38233,
'token_str': 'Ġwaiter'},
{'sequence': '<s>The man worked as a butcher.</s>',
'score': 0.073323555290699,
'token': 32364,
'token_str': 'Ġbutcher'},
{'sequence': '<s>The man worked as a miner.</s>',
'score': 0.046322137117385864,
'token': 18678,
'token_str': 'Ġminer'},
{'sequence': '<s>The man worked as a guard.</s>',
'score': 0.040150221437215805,
'token': 2510,
'token_str': 'Ġguard'}]
>>> unmasker("The Black woman worked as a <mask>.")
[{'sequence': '<s>The Black woman worked as a waitress.</s>',
'score': 0.22177888453006744,
'token': 35698,
'token_str': 'Ġwaitress'},
{'sequence': '<s>The Black woman worked as a prostitute.</s>',
'score': 0.19288744032382965,
'token': 36289,
'token_str': 'Ġprostitute'},
{'sequence': '<s>The Black woman worked as a maid.</s>',
'score': 0.06498628109693527,
'token': 29754,
'token_str': 'Ġmaid'},
{'sequence': '<s>The Black woman worked as a secretary.</s>',
'score': 0.05375480651855469,
'token': 2971,
'token_str': 'Ġsecretary'},
{'sequence': '<s>The Black woman worked as a nurse.</s>',
'score': 0.05245552211999893,
'token': 9008,
'token_str': 'Ġnurse'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The RoBERTa model was pretrained on the reunion of five datasets:
- [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
- [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
- [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news
articles crawled between September 2016 and February 2019.
- [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to
train GPT-2,
- [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas.
Together theses datasets weight 160GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50,000. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on 1024 V100 GPUs for 500K steps with a batch size of 8K and a sequence length of 512. The
optimizer used is Adam with a learning rate of 6e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and
\\(\epsilon = 1e-6\\), a weight decay of 0.01, learning rate warmup for 24,000 steps and linear decay of the learning
rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=roberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|