File size: 5,056 Bytes
b0f631c
 
 
39a830d
b77717c
 
 
b0f631c
 
 
0b2cbcc
f5ced79
0b2cbcc
f5ced79
 
2d73f34
f5ced79
2d73f34
f5ced79
 
 
 
 
2d73f34
 
 
f518bb2
 
 
b0f631c
 
120634a
 
b3b4c3e
b0f631c
39a830d
120634a
 
 
 
 
 
f41d45b
 
 
 
 
 
 
 
 
 
 
39a830d
f41d45b
 
 
120634a
 
 
 
 
 
b0f631c
 
 
 
 
 
120634a
 
b691e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120634a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language: en
tags:
- SEGA
- data augmentation
- keywords-to-text generation
- sketch-to-text generation
license: apache-2.0
datasets:
- C4


widget:
- text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
  example_title: "Example 1"
- text: "<mask> machine learning <mask> my research interest <mask> data science <mask>"
  example_title: "Example 2"
- text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>"
  example_title: "Example 3"
- text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
  example_title: "Example with a prompt 1"
- text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
  example_title: "Example with a prompt 2"

inference:
  parameters:
    max_length: 200
    num_beams: 3
    do_sample: True
---

# SEGA-large model

**SEGA: SkEtch-based Generative Augmentation**

**SEGA** is a **general text augmentation model** that can be used for data augmentation for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the `C4-realnewslike` corpus. 

- Paper: [this paper](to_be_added)
- Github: [this repository](to_be_added). 



### How to use
```python
from transformers import pipeline
# 1. load the model with the huggingface `pipeline`
sega = pipeline("text2text-generation", model='beyond/sega-large', device=0)
# 2. provide a sketch (joint by <mask> tokens)
sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
# 3. just do it!
generated_text = sega(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
print(generated_text)
```
Output:
```shell
'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.'
```

## Model variations


| Model | #params | Language |
|------------------------|--------------------------------|-------|
| [`sega-large`]() | xM   | English |
| [`sega-base`]()  | xM    | English |
| [`sega-small`]()        | xM    | English |
| [`sega-large-chinese`]() | xM    |  Chinese |
| [`sega-base-chinese`]() | xM    | Chinese |
| [`sega-small-chinese`]() | xM | Chinese |


## Data Augmentation for Text Classification Tasks:
- Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes.
- Datasets: [HuffPost](https://huggingface.co/datasets/khalidalt/HuffPost), [BBC](https://huggingface.co/datasets/SetFit/bbc-news), [SST2](https://huggingface.co/datasets/glue), [IMDB](https://huggingface.co/datasets/imdb), [Yahoo](https://huggingface.co/datasets/yahoo_answers_topics), [20NG](https://huggingface.co/datasets/newsgroup).
- Base classifier: [DistilBERT](https://huggingface.co/distilbert-base-cased)

| Method  |      HuffPost      |         BBC        |          SST2          |          IMDB          |    Yahoo   |    20NG    |    avg.    |
|---------|:------------------:|:------------------:|:----------------------:|:----------------------:|:----------:|:----------:|:----------:|
|         |   ID / OOD (BBC)   |   ID / OOD (Huff)  |     ID / OOD (IMDB)    |     ID / OOD (SST2)    |            |            |            |
| none    |   79.17 / 62.32    | **96.16** / 62.00  |     76.67 / 73.16      |     77.87 / 74.43      |   45.77    |   46.67    |   69.42    |
| EDA     |   79.63 / 67.48    |   95.11 / 58.92    |     75.52 / 69.46      |     77.88 / 75.88      |   45.10    |   46.15    |   69.11    |
| STA     |   80.74 / 69.31    |   95.64 / 64.82    |     77.80 / 73.66      |     77.88 / 74.77      |   46.96    |   47.27    |   70.88    |
| Back    |   80.48 / 67.75    |   95.28 / 63.10    |     76.96 / 72.23      |     78.35 / 75.96      |   46.10    |   46.61    |   70.28    |
| MLM     |   80.04 / 66.80    |   96.07 / 65.39    |      76.61/ 73.11      |     75.73 / 73.70      |   45.35    |   46.53    |   69.93    |
| C-MLM   |   79.96 / 65.10    | 96.13 / **67.80**  |     76.91 / 71.83      |     77.31 / 75.02      |   45.29    |   46.36    |   70.17    |
| LAMBADA |   81.03 / 68.89    |   93.75 / 52.79    |     77.87 / 74.54      |     77.49 / 74.33      |   50.66    |   47.72    |   69.91    |
| **SEGA (Ours)**   |   81.43 / 74.87    |   95.61 / 67.79    |     77.87 / 72.94      | **79.51** / **76.75** |   49.43    |   50.47    |   72.67    |
| **SEGA-f (Ours)**  | **81.82** / **76.18** |   95.78 / 67.79    | **80.59** / **80.32** |     79.37 / 76.61      | **50.12** | **50.81** | **73.94** |



### BibTeX entry and citation info