|
--- |
|
language: |
|
- ko |
|
- en |
|
license: other |
|
library_name: transformers |
|
license_name: gemma-terms-of-use |
|
license_link: https://ai.google.dev/gemma/terms |
|
pipeline_tag: text-generation |
|
tags: |
|
- pytorch |
|
--- |
|
|
|
# Gemma-Ko |
|
|
|
> Update @ 2024.03.08: First release of Gemma-Ko 7B model |
|
|
|
**Original Gemma Model Page**: [Gemma](https://ai.google.dev/gemma/docs) |
|
|
|
This model card corresponds to the 7B base version of the **Gemma-Ko** model. |
|
|
|
**Resources and Technical Documentation**: |
|
|
|
* [Original Google's Gemma-7B](https://huggingface.co/google/gemma-7b) |
|
* [Training Code @ Github: Gemma-EasyLM](https://github.com/Beomi/Gemma-EasyLM) |
|
|
|
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) |
|
|
|
**Citation** |
|
|
|
```bibtex |
|
@misc {gemma_ko_7b, |
|
author = { {Junbum Lee, Taekyoon Choi} }, |
|
title = { gemma-ko-7b }, |
|
year = 2024, |
|
url = { https://huggingface.co/beomi/gemma-ko-7b }, |
|
doi = { 10.57967/hf/1859 }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |
|
|
|
**Model Developers**: Junbum Lee (Beomi) & Taekyoon Choi (Taekyoon) |
|
|
|
## Model Information |
|
|
|
Summary description and brief definition of inputs and outputs. |
|
|
|
### Description |
|
|
|
Gemma is a family of lightweight, state-of-the-art open models from Google, |
|
built from the same research and technology used to create the Gemini models. |
|
They are text-to-text, decoder-only large language models, available in English, |
|
with open weights, pre-trained variants, and instruction-tuned variants. Gemma |
|
models are well-suited for a variety of text generation tasks, including |
|
question answering, summarization, and reasoning. Their relatively small size |
|
makes it possible to deploy them in environments with limited resources such as |
|
a laptop, desktop or your own cloud infrastructure, democratizing access to |
|
state of the art AI models and helping foster innovation for everyone. |
|
|
|
### Usage |
|
|
|
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. |
|
|
|
#### Running the model on a CPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("beomi/gemma-ko-7b") |
|
model = AutoModelForCausalLM.from_pretrained("beomi/gemma-ko-7b") |
|
|
|
input_text = "๋จธ์ ๋ฌ๋๊ณผ ๋ฅ๋ฌ๋์ ์ฐจ์ด๋" |
|
input_ids = tokenizer(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
#### Running the model on a single / multi GPU |
|
|
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("beomi/gemma-ko-7b") |
|
model = AutoModelForCausalLM.from_pretrained("beomi/gemma-ko-7b", device_map="auto") |
|
|
|
input_text = "๋จธ์ ๋ฌ๋๊ณผ ๋ฅ๋ฌ๋์ ์ฐจ์ด๋" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
#### Other optimizations |
|
|
|
* _Flash Attention 2_ |
|
|
|
First make sure to install `flash-attn` in your environment `pip install flash-attn` |
|
|
|
```diff |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"beomi/gemma-ko-7b", |
|
torch_dtype=torch.float16, |
|
+ attn_implementation="flash_attention_2" |
|
).to(0) |
|
``` |
|
|
|
### Inputs and outputs |
|
|
|
* **Input:** Text string, such as a question, a prompt, or a document to be |
|
summarized. |
|
* **Output:** Generated Korean/English-language text in response to the input, such |
|
as an answer to a question, or a summary of a document. |
|
|
|
## Implementation Information |
|
|
|
Details about the model internals. |
|
|
|
### Software |
|
|
|
Training was done using [beomi/Gemma-EasyLM](https://github.com/Beomi/Gemma-EasyLM). |
|
|
|
|
|
## Evaluation |
|
|
|
Model evaluation metrics and results. |
|
|
|
### Benchmark Results |
|
|
|
TBD |
|
|
|
## Usage and Limitations |
|
|
|
These models have certain limitations that users should be aware of. |
|
|
|
### Intended Usage |
|
|
|
Open Large Language Models (LLMs) have a wide range of applications across |
|
various industries and domains. The following list of potential uses is not |
|
comprehensive. The purpose of this list is to provide contextual information |
|
about the possible use-cases that the model creators considered as part of model |
|
training and development. |
|
|
|
* Content Creation and Communication |
|
* Text Generation: These models can be used to generate creative text formats |
|
such as poems, scripts, code, marketing copy, and email drafts. |
|
* Research and Education |
|
* Natural Language Processing (NLP) Research: These models can serve as a |
|
foundation for researchers to experiment with NLP techniques, develop |
|
algorithms, and contribute to the advancement of the field. |
|
* Language Learning Tools: Support interactive language learning experiences, |
|
aiding in grammar correction or providing writing practice. |
|
* Knowledge Exploration: Assist researchers in exploring large bodies of text |
|
by generating summaries or answering questions about specific topics. |
|
|
|
### Limitations |
|
|
|
* Training Data |
|
* The quality and diversity of the training data significantly influence the |
|
model's capabilities. Biases or gaps in the training data can lead to |
|
limitations in the model's responses. |
|
* The scope of the training dataset determines the subject areas the model can |
|
handle effectively. |
|
* Context and Task Complexity |
|
* LLMs are better at tasks that can be framed with clear prompts and |
|
instructions. Open-ended or highly complex tasks might be challenging. |
|
* A model's performance can be influenced by the amount of context provided |
|
(longer context generally leads to better outputs, up to a certain point). |
|
* Language Ambiguity and Nuance |
|
* Natural language is inherently complex. LLMs might struggle to grasp subtle |
|
nuances, sarcasm, or figurative language. |
|
* Factual Accuracy |
|
* LLMs generate responses based on information they learned from their |
|
training datasets, but they are not knowledge bases. They may generate |
|
incorrect or outdated factual statements. |
|
* Common Sense |
|
* LLMs rely on statistical patterns in language. They might lack the ability |
|
to apply common sense reasoning in certain situations. |
|
|
|
### Ethical Considerations and Risks |
|
|
|
The development of large language models (LLMs) raises several ethical concerns. |
|
In creating an open model, we have carefully considered the following: |
|
|
|
* Bias and Fairness |
|
* LLMs trained on large-scale, real-world text data can reflect socio-cultural |
|
biases embedded in the training material. These models underwent careful |
|
scrutiny, input data pre-processing described and posterior evaluations |
|
reported in this card. |
|
* Misinformation and Misuse |
|
* LLMs can be misused to generate text that is false, misleading, or harmful. |
|
* Guidelines are provided for responsible use with the model, see the |
|
[Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). |
|
* Transparency and Accountability: |
|
* This model card summarizes details on the models' architecture, |
|
capabilities, limitations, and evaluation processes. |
|
* A responsibly developed open model offers the opportunity to share |
|
innovation by making LLM technology accessible to developers and researchers |
|
across the AI ecosystem. |
|
|
|
Risks identified and mitigations: |
|
|
|
* Perpetuation of biases: It's encouraged to perform continuous monitoring |
|
(using evaluation metrics, human review) and the exploration of de-biasing |
|
techniques during model training, fine-tuning, and other use cases. |
|
* Generation of harmful content: Mechanisms and guidelines for content safety |
|
are essential. Developers are encouraged to exercise caution and implement |
|
appropriate content safety safeguards based on their specific product policies |
|
and application use cases. |
|
* Misuse for malicious purposes: Technical limitations and developer and |
|
end-user education can help mitigate against malicious applications of LLMs. |
|
Educational resources and reporting mechanisms for users to flag misuse are |
|
provided. Prohibited uses of Gemma models are outlined in the |
|
[Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). |
|
* Privacy violations: Models were trained on data filtered for removal of PII |
|
(Personally Identifiable Information). Developers are encouraged to adhere to |
|
privacy regulations with privacy-preserving techniques. |
|
|
|
## Acknowledgement |
|
|
|
The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. |