File size: 13,497 Bytes
901e4aa
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe62c018c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe62c018ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe62c018d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe62c018dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fe62c018e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fe62c018ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe62c018f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe62c019000>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe62c019090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe62c019120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe62c0191b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe62c019240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe62c01cec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685691474414719886, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1yfr0ktIY+okkEPsF+Z75iW3s9KLh+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHaPQ0GeMCMAWyUS/OMAXSUR0CxxgD+WGATdX2UKGgGR0A9fSnLq2SdaAdLYWgIR0CxxiOTJQtSdX2UKGgGR0BwRs46wMYuaAdNGgFoCEdAscaJSGahH3V9lChoBkdAcb0hB7eEZmgHS91oCEdAsccfWpZOi3V9lChoBkdAccGrkKeCkGgHTTABaAhHQLHHj9y925h1fZQoaAZHQHBSPWcz68BoB01XAWgIR0CxyA9GEwnIdX2UKGgGR0ByS+fvnbItaAdL+2gIR0CxyGr1Iy0sdX2UKGgGR0Bw6dm29crzaAdL/mgIR0CxyRmIfr8jdX2UKGgGR0BxbOLXL/0eaAdNUQFoCEdAscmZlJ6IFnV9lChoBkdAcDRk/8l5W2gHS/5oCEdAscn5HFxXGXV9lChoBkdAcfL/FR51NmgHS/hoCEdAscqcm3OObXV9lChoBkdAUG2SaEzwdGgHS7JoCEdAscra36Q/5nV9lChoBkdAciD8ujASF2gHS/hoCEdAscszEk0JnnV9lChoBkdAciWxhDw6Q2gHTSQBaAhHQLHLnfigkC51fZQoaAZHQHDEws052hZoB01cAWgIR0CxzGeN1hb4dX2UKGgGR0BwKOWgOBlMaAdNEAFoCEdAsczIiD/VAnV9lChoBkdAckltU4rBkGgHS99oCEdAsc0Y0VJti3V9lChoBkdAcwo5Rjz7M2gHS/loCEdAsc1ywLVnVXV9lChoBkdAcXMNahYeT2gHS/loCEdAsc4yVPepGXV9lChoBkdAcJp0dzXBg2gHS/1oCEdAsc6rU2DQJHV9lChoBkdAcS08PFvQ4WgHS+VoCEdAsc8XCqIacnV9lChoBkdAcfcuIhyKemgHS/poCEdAsc+OBxxT9HV9lChoBkdAcX90YTCcgGgHS99oCEdAsc/998Z1m3V9lChoBkdAcTt2ovSMLmgHS/NoCEdAsdDvIvJzUHV9lChoBkdAcvs3XI2fkGgHTREBaAhHQLHRgmdRR/F1fZQoaAZHQHIGGJJoTPBoB00kAWgIR0Cx0iAoXsPbdX2UKGgGR0Bxi8MI/qxDaAdNMgFoCEdAsdLbNGEwnHV9lChoBkdAcQ5rnTy8SWgHTQsBaAhHQLHTO+mm+Cd1fZQoaAZHQHEbo4VARkFoB0vuaAhHQLHTkL0jC551fZQoaAZHQHCczqfOD8NoB01BAWgIR0Cx1Aec6NlzdX2UKGgGR0ByQAyzollcaAdL5GgIR0Cx1KTj3mFKdX2UKGgGR0BQwkkOZssQaAdLvGgIR0Cx1OdjgAIZdX2UKGgGR0BzQaCsfaHsaAdL+WgIR0Cx1USEL6UJdX2UKGgGR0BvuRYHPeHjaAdNKwFoCEdAsdWu7HyVfXV9lChoBkdAchxvc8DB/WgHTTQBaAhHQLHWZ61LJ0Z1fZQoaAZHQHGHNuk1uR9oB0vyaAhHQLHWwIz3yqd1fZQoaAZHQHDCQlByCFtoB00CAWgIR0Cx1x0mtyPudX2UKGgGR0ByJRiTdLxqaAdL4WgIR0Cx120qDsdDdX2UKGgGR0BxB6L1mJ3xaAdNDQFoCEdAsdgUjgQ6IXV9lChoBkdAcUXeZXuE3GgHTQUBaAhHQLHYc3+dbxF1fZQoaAZHQG0qXy7PIGRoB0v3aAhHQLHYzaGHpKV1fZQoaAZHQGgLsjNY8uBoB03oA2gIR0Cx2oTt9hJAdX2UKGgGR0ByWHmxMWXUaAdNFwFoCEdAsdruweNkv3V9lChoBkdAcAoKP4mCy2gHTQQBaAhHQLHblBlMAWB1fZQoaAZHQHE3prYXfqJoB0vzaAhHQLHb8Kneizt1fZQoaAZHQG+GsKkVN6BoB0vnaAhHQLHcTt+kP+Z1fZQoaAZHQHAq39R77bdoB0vZaAhHQLHctEx7AtZ1fZQoaAZHQG7jKjBVMmFoB00MAWgIR0Cx3ZNIPK+0dX2UKGgGR0Bv4U6/7BO6aAdL8WgIR0Cx3guDvmYCdX2UKGgGR0BwifLGJemfaAdL2WgIR0Cx3ntYwIt2dX2UKGgGR0ByG8n6VMVUaAdNIgFoCEdAsd8W1PWQOnV9lChoBkdAb2+14Pf8/GgHS/loCEdAsd+YL/jsEHV9lChoBkdAboGuV5a/y2gHS+poCEdAseCAny/bkHV9lChoBkdAQlhczImw7mgHS15oCEdAseCt8stkF3V9lChoBkdARIdKbrkbP2gHS5toCEdAseDmbZvkzXV9lChoBkdAcTC6XSjQA2gHTRoBaAhHQLHhTDnNgSh1fZQoaAZHQG4g1OCXhOxoB0vfaAhHQLHhmbKzRhN1fZQoaAZHQFH17K7qY7doB0uUaAhHQLHiFZi/fwZ1fZQoaAZHQHHpKmwaBI5oB0vzaAhHQLHibRkmQbN1fZQoaAZHQG+OJsoDxLFoB0vxaAhHQLHiw33pOet1fZQoaAZHQHETjcmBvrJoB00KAWgIR0Cx4yO2AoXsdX2UKGgGR0BnwI6Oo5xSaAdN6ANoCEdAseTUQBgeBHV9lChoBkdAcPPEUj9n9WgHTSUBaAhHQLHliQK8cuJ1fZQoaAZHQHF9d7ngYP5oB0vfaAhHQLHl2itJWeZ1fZQoaAZHQHJTWkN4JNVoB0v9aAhHQLHmNYF7laN1fZQoaAZHQHItZOJtSAJoB0vvaAhHQLHmiy+HrQh1fZQoaAZHQHBQR46fapRoB0vbaAhHQLHnJua4MF51fZQoaAZHQHFo9WZJCjVoB0vgaAhHQLHndxPwd811fZQoaAZHQHDxfugHu7ZoB00EAWgIR0Cx59KZYxL1dX2UKGgGR0BxmxxjriVCaAdL8GgIR0Cx6CwY+B6KdX2UKGgGR0AyB3Td+G47aAdLbGgIR0Cx6FIlUp/gdX2UKGgGR0Bw3wrRSgoPaAdL+WgIR0Cx6PYJE6T4dX2UKGgGR0ByS/8Jlar4aAdL2WgIR0Cx6UV/+bVjdX2UKGgGR0Bxz7QWvbGnaAdL12gIR0Cx6Y+J+DvmdX2UKGgGR0By4ph/iHZcaAdL32gIR0Cx6d47V8TjdX2UKGgGR0B0MHW9US7HaAdL3GgIR0Cx6i1pwjt5dX2UKGgGR0Bubik690zTaAdL+2gIR0Cx6uqErXlKdX2UKGgGR0BwELRzBAObaAdL8GgIR0Cx610MCtA+dX2UKGgGR0BxBHEehf0FaAdL/WgIR0Cx69K6reZYdX2UKGgGR0ByIJCAtnPFaAdNAQFoCEdAsexJ7a7EpHV9lChoBkdAcQk3y7PIGWgHTQsBaAhHQLHtPfnfVI91fZQoaAZHQHJxLB0p3HJoB0vQaAhHQLHtq5C4SYh1fZQoaAZHQHDe5yyUs4FoB0v0aAhHQLHuKiH6/It1fZQoaAZHQHFe8XJo0yhoB0vWaAhHQLHunUc4o7V1fZQoaAZHQHGyMnNPgvVoB0vnaAhHQLHvVfdhy811fZQoaAZHQHGz2uDBdldoB0vxaAhHQLHvrO3DvVp1fZQoaAZHQHE1gJC0F8poB00PAWgIR0Cx8A4VuaWpdX2UKGgGR8BPU6ZhKDkEaAdLZWgIR0Cx8DHcxj8UdX2UKGgGR0BK1gtFrl/6aAdLzmgIR0Cx8HvSc9W7dX2UKGgGR0BuJRCF9KEnaAdL8GgIR0Cx8RYzBRAKdX2UKGgGR0BzHAmOU+s6aAdL/GgIR0Cx8XBWgezVdX2UKGgGR0BwFl5Qgs9TaAdL5mgIR0Cx8cFHjIaMdX2UKGgGR0Bw2Kkj5bhWaAdL7WgIR0Cx8hPKZDzAdX2UKGgGR0BwitCLMs6JaAdL+GgIR0Cx8rn0f5k9dX2UKGgGR0BxrgFA3T/iaAdL1WgIR0Cx8wYnKGL2dX2UKGgGR0BxePeP7vXtaAdLz2gIR0Cx81Jgb6xgdX2UKGgGR0ByeoAR02cbaAdL/2gIR0Cx860Iw/PgdX2UKGgGR0BybSXb/Ot5aAdL5WgIR0Cx9ACcbzbwdX2UKGgGR0Bmp/hQ3xWlaAdN6ANoCEdAsfW5yq+8G3V9lChoBkdAYz9KHO8kEGgHTegDaAhHQLH3bq0MPSV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRxBEuHYJgm5PfUW+htCd9wACMA2luY5SKEZsUBnD9jZWxk1SVKyvC3/AAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQa/br4YKfF86FhxeeYKseRYwDaW5jlIoQwxTsU26XtgI5DNpeM0HVb3WMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylEqERfc4dWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}