File size: 2,373 Bytes
4a8e673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: klue/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: pogny-128-0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pogny-128-0.1

This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6873
- Accuracy: 0.4376
- F1: 0.2665

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 42.1657       | 1.0   | 603  | 24.7694         | 0.4376   | 0.2665 |
| 38.0547       | 2.0   | 1206 | 34.6085         | 0.2545   | 0.1032 |
| 34.4507       | 3.0   | 1809 | 47.2521         | 0.0240   | 0.0011 |
| 33.6528       | 4.0   | 2412 | 23.6900         | 0.0702   | 0.0092 |
| 29.4715       | 5.0   | 3015 | 13.6478         | 0.0107   | 0.0002 |
| 26.073        | 6.0   | 3618 | 29.8545         | 0.4376   | 0.2665 |
| 23.0398       | 7.0   | 4221 | 17.9423         | 0.4376   | 0.2665 |
| 20.1565       | 8.0   | 4824 | 18.5313         | 0.0702   | 0.0092 |
| 17.9295       | 9.0   | 5427 | 16.2984         | 0.4376   | 0.2665 |
| 12.4633       | 10.0  | 6030 | 11.9847         | 0.2545   | 0.1032 |
| 9.5341        | 11.0  | 6633 | 10.4590         | 0.4376   | 0.2665 |
| 8.1157        | 12.0  | 7236 | 3.1051          | 0.4376   | 0.2665 |
| 5.1415        | 13.0  | 7839 | 3.4676          | 0.0702   | 0.0092 |
| 3.3891        | 14.0  | 8442 | 2.0901          | 0.4376   | 0.2665 |
| 1.854         | 15.0  | 9045 | 1.6873          | 0.4376   | 0.2665 |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0a0+b5021ba
- Datasets 2.6.2
- Tokenizers 0.14.1