File size: 2,373 Bytes
4a8e673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: klue/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: pogny-128-0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pogny-128-0.1
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6873
- Accuracy: 0.4376
- F1: 0.2665
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 42.1657 | 1.0 | 603 | 24.7694 | 0.4376 | 0.2665 |
| 38.0547 | 2.0 | 1206 | 34.6085 | 0.2545 | 0.1032 |
| 34.4507 | 3.0 | 1809 | 47.2521 | 0.0240 | 0.0011 |
| 33.6528 | 4.0 | 2412 | 23.6900 | 0.0702 | 0.0092 |
| 29.4715 | 5.0 | 3015 | 13.6478 | 0.0107 | 0.0002 |
| 26.073 | 6.0 | 3618 | 29.8545 | 0.4376 | 0.2665 |
| 23.0398 | 7.0 | 4221 | 17.9423 | 0.4376 | 0.2665 |
| 20.1565 | 8.0 | 4824 | 18.5313 | 0.0702 | 0.0092 |
| 17.9295 | 9.0 | 5427 | 16.2984 | 0.4376 | 0.2665 |
| 12.4633 | 10.0 | 6030 | 11.9847 | 0.2545 | 0.1032 |
| 9.5341 | 11.0 | 6633 | 10.4590 | 0.4376 | 0.2665 |
| 8.1157 | 12.0 | 7236 | 3.1051 | 0.4376 | 0.2665 |
| 5.1415 | 13.0 | 7839 | 3.4676 | 0.0702 | 0.0092 |
| 3.3891 | 14.0 | 8442 | 2.0901 | 0.4376 | 0.2665 |
| 1.854 | 15.0 | 9045 | 1.6873 | 0.4376 | 0.2665 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0a0+b5021ba
- Datasets 2.6.2
- Tokenizers 0.14.1
|