azmn-posicao-v2 / README.md
belisards's picture
kairos-posicao-bert3
726d4a8 verified
---
library_name: transformers
license: mit
base_model: belisards/congretimbau
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: MyDrive
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MyDrive
This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1336
- Accuracy: 0.8776
- F1: 0.8115
- Recall: 0.7919
- Precision: 0.8389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 5151
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 14
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.1343 | 2.8333 | 51 | 0.1396 | 0.7679 | 0.5492 | 0.5629 | 0.7832 |
| 0.1057 | 5.6667 | 102 | 0.1280 | 0.8036 | 0.6777 | 0.6543 | 0.7887 |
| 0.053 | 8.5 | 153 | 0.1457 | 0.8482 | 0.7899 | 0.7742 | 0.8125 |
| 0.0159 | 11.3333 | 204 | 0.2345 | 0.8482 | 0.7952 | 0.7854 | 0.8072 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0