azmn-posicao-v2 / README.md
belisards's picture
kairos-posicao-bert3
726d4a8 verified
metadata
library_name: transformers
license: mit
base_model: belisards/congretimbau
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: MyDrive
    results: []

MyDrive

This model is a fine-tuned version of belisards/congretimbau on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1336
  • Accuracy: 0.8776
  • F1: 0.8115
  • Recall: 0.7919
  • Precision: 0.8389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 5151
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.1343 2.8333 51 0.1396 0.7679 0.5492 0.5629 0.7832
0.1057 5.6667 102 0.1280 0.8036 0.6777 0.6543 0.7887
0.053 8.5 153 0.1457 0.8482 0.7899 0.7742 0.8125
0.0159 11.3333 204 0.2345 0.8482 0.7952 0.7854 0.8072

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0