File size: 11,385 Bytes
1ceb840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# base calibration metric

# https://github.com/JonathanWenger/pycalib/blob/master/pycalib/scoring.py
# https://github.com/google-research/robustness_metrics/blob/master/robustness_metrics/metrics/uncertainty.py
#  https://github.com/kjdhfg/fd-shifts

from __future__ import annotations
import scipy
import sklearn.utils.validation

from dataclasses import dataclass
from functools import cached_property
from typing import Any
import pandas as pd
import numpy as np
import numpy.typing as npt
from collections import OrderedDict
from sklearn import metrics as skm
import evaluate as HF_evaluate

ArrayType = npt.NDArray[np.floating]


## https://github.com/IML-DKFZ/fd-shifts/blob/main/fd_shifts/analysis/confid_scores.py#L20

# ----------------------------------- general metrics with consistent metric(y_true, p_hat) API -----------------------------------


def f1_w(y_true, p_hat, y_hat=None):
    if y_hat is None:
        y_hat = np.argmax(p_hat, axis=-1)
    return skm.f1_score(y_true, y_hat, average="weighted")


def f1_micro(y_true, p_hat, y_hat=None):
    if y_hat is None:
        y_hat = np.argmax(p_hat, axis=-1)
    return skm.f1_score(y_true, y_hat, average="micro")


def f1_macro(y_true, p_hat, y_hat=None):
    if y_hat is None:
        y_hat = np.argmax(p_hat, axis=-1)
    return skm.f1_score(y_true, y_hat, average="macro")


# Pure numpy and TF implementations of proper losses (as metrics) -----------------------------------


def brier_loss(y_true, p_hat):
    r"""Brier score.
    If the true label is k, while the predicted vector of probabilities is
    [y_1, ..., y_n], then the Brier score is equal to
    \sum_{i != k} y_i^2 + (y_k - 1)^2.

    The smaller the Brier score, the better, hence the naming with "loss".
    Across all items in a set N predictions, the Brier score measures the
    mean squared difference between (1) the predicted probability assigned
    to the possible outcomes for item i, and (2) the actual outcome.
    Therefore, the lower the Brier score is for a set of predictions, the
    better the predictions are calibrated. Note that the Brier score always
    takes on a value between zero and one, since this is the largest
    possible difference between a predicted probability (which must be
    between zero and one) and the actual outcome (which can take on values
    of only 0 and 1). The Brier loss is composed of refinement loss and
    calibration loss.

    """
    N = len(y_true)
    K = p_hat.shape[-1]

    if y_true.shape != p_hat.shape:
        zeros = scipy.sparse.lil_matrix((N, K))
        for i in range(N):
            zeros[i, y_true[i]] = 1

    if not np.isclose(np.sum(p_hat), len(p_hat)):
        p_hat = scipy.special.softmax(p_hat, axis=-1)

    return np.mean(np.sum(np.array(p_hat - zeros) ** 2, axis=1))


def nll(y_true, p_hat):
    r"""Multi-class negative log likelihood.
    If the true label is k, while the predicted vector of probabilities is
    [p_1, ..., p_K], then the negative log likelihood is -log(p_k).
    Does not require onehot encoding
    """
    labels = np.arange(p_hat.shape[-1])
    return skm.log_loss(y_true, p_hat, labels=labels)


def accuracy(y_true, p_hat):
    y_pred = np.argmax(p_hat, axis=-1)
    return sklearn.metrics.accuracy_score(y_true=y_true, y_pred=y_pred)


AURC_DISPLAY_SCALE = 1  # 1000

"""
From: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/reports/custom/report52.pdf 

The risk-coverage (RC) curve [28, 16] is a measure of the trade-off between the
coverage (the proportion of test data encountered), and the risk (the error rate under this coverage). Since each
prediction comes with a confidence score, given a list of prediction correctness Z paired up with the confidence
scores C, we sort C in reverse order to obtain sorted C'
, and its corresponding correctness Z'
. Note that the correctness is computed based on Exact Match (EM) as described in [22]. The RC curve is then obtained by
computing the risk of the coverage from the beginning of Z'
(most confident) to the end (least confident). In particular, these metrics evaluate 
the relative order of the confidence score, which means that we want wrong
answers have lower confidence score than the correct ones, ignoring their absolute values. 

Source: https://github.com/kjdhfg/fd-shifts 

References:
-----------

[1] Jaeger, P.F., Lüth, C.T., Klein, L. and Bungert, T.J., 2022. A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification. arXiv preprint arXiv:2211.15259.

[2] Kamath, A., Jia, R. and Liang, P., 2020. Selective Question Answering under Domain Shift. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 5684-5696).

"""


@dataclass
class StatsCache:
    """Cache for stats computed by scikit used by multiple metrics.

    Attributes:
        confids (array_like): Confidence values
        correct (array_like): Boolean array (best converted to int) where predictions were correct
    """

    confids: npt.NDArray[Any]
    correct: npt.NDArray[Any]

    @cached_property
    def roc_curve_stats(self) -> tuple[npt.NDArray[Any], npt.NDArray[Any]]:
        fpr, tpr, _ = skm.roc_curve(self.correct, self.confids)
        return fpr, tpr

    @property
    def residuals(self) -> npt.NDArray[Any]:
        return 1 - self.correct

    @cached_property
    def rc_curve_stats(self) -> tuple[list[float], list[float], list[float]]:
        coverages = []
        risks = []

        n_residuals = len(self.residuals)
        idx_sorted = np.argsort(self.confids)

        coverage = n_residuals
        error_sum = sum(self.residuals[idx_sorted])

        coverages.append(coverage / n_residuals)
        risks.append(error_sum / n_residuals)

        weights = []

        tmp_weight = 0
        for i in range(0, len(idx_sorted) - 1):
            coverage = coverage - 1
            error_sum = error_sum - self.residuals[idx_sorted[i]]
            selective_risk = error_sum / (n_residuals - 1 - i)
            tmp_weight += 1
            if i == 0 or self.confids[idx_sorted[i]] != self.confids[idx_sorted[i - 1]]:
                coverages.append(coverage / n_residuals)
                risks.append(selective_risk)
                weights.append(tmp_weight / n_residuals)
                tmp_weight = 0

        # add a well-defined final point to the RC-curve.
        if tmp_weight > 0:
            coverages.append(0)
            risks.append(risks[-1])
            weights.append(tmp_weight / n_residuals)
        return coverages, risks, weights


def aurc(stats_cache: StatsCache):
    """auc metric function
    Args:
        stats_cache (StatsCache): StatsCache object
    Returns:
        metric value
    Important for assessment: LOWER is better!
    """
    _, risks, weights = stats_cache.rc_curve_stats
    return sum([(risks[i] + risks[i + 1]) * 0.5 * weights[i] for i in range(len(weights))]) * AURC_DISPLAY_SCALE


def aurc_logits(references, predictions, plot=False, get_cache=False, use_as_is=False):
    if not use_as_is:
        if not np.isclose(np.sum(references), len(references)):
            references = (np.argmax(predictions, -1) == references).astype(int)  # correctness

        if not np.isclose(np.sum(predictions), len(predictions)):
            predictions = scipy.special.softmax(predictions, axis=-1)

        if predictions.ndim == 2:
            predictions = np.max(predictions, -1)

    cache = StatsCache(confids=predictions, correct=references)

    if plot:
        coverages, risks, weights = cache.rc_curve_stats
        pd.options.plotting.backend = "plotly"
        df = pd.DataFrame(zip(coverages, risks, weights), columns=["% Coverage", "% Risk", "weights"])
        fig = df.plot(x="% Coverage", y="% Risk")
        fig.show()
    if get_cache:
        return {"aurc": aurc(cache), "cache": cache}
    return aurc(cache)


def multi_aurc_plot(caches, names, aurcs=None, verbose=False):
    pd.options.plotting.backend = "plotly"
    df = pd.DataFrame()
    for cache, name in zip(caches, names):
        coverages, risks, weights = cache.rc_curve_stats
        df[name] = pd.Series(risks, index=coverages)
    if verbose:
        print(df.head(), df.index, df.columns)
    fig = df.plot()
    title = ""
    if aurcs is not None:
        title = "AURC: " + " - ".join([str(round(aurc, 4)) for aurc in aurcs])
    fig.update_layout(title=title, xaxis_title="% Coverage", yaxis_title="% Risk")
    fig.show()


def ece_logits(references, predictions, use_as_is=False):
    if not use_as_is:
        if not np.isclose(np.sum(predictions), len(predictions)):
            predictions = scipy.special.softmax(predictions, axis=-1)

    metric = HF_evaluate.load("jordyvl/ece")
    kwargs = dict(
        n_bins=min(len(predictions) - 1, 100),
        scheme="equal-mass",
        bin_range=[0, 1],
        proxy="upper-edge",
        p=1,
        detail=False,
    )

    ece_result = metric.compute(
        references=references,
        predictions=predictions,
        **kwargs,
    )
    return ece_result["ECE"]


METRICS = [accuracy, brier_loss, nll, f1_w, f1_macro, ece_logits, aurc_logits]


def apply_metrics(y_true, y_probs, metrics=METRICS):
    predictive_performance = OrderedDict()
    for metric in metrics:
        try:
            predictive_performance[f"{metric.__name__.replace('_logits', '')}"] = metric(y_true, y_probs)
        except Exception as e:
            print(e)
    # print(json.dumps(predictive_performance, indent=4))
    return predictive_performance


def evaluate_coverages(
    logits, labels, confidence, coverages=[100, 99, 98, 97, 95, 90, 85, 80, 75, 70, 60, 50, 40, 30, 20, 10]
):
    correctness = np.equal(logits.argmax(-1), labels)
    abstention_results = list(zip(list(confidence), list(correctness)))
    # sort the abstention results according to their reservations, from high to low
    abstention_results.sort(key=lambda x: x[0])
    # get the "correct or not" list for the sorted results
    sorted_correct = list(map(lambda x: int(x[1]), abstention_results))
    size = len(sorted_correct)
    print("Abstention Logit: accuracy of coverage ")  # 1-risk
    for coverage in coverages:
        covered_correct = sorted_correct[: round(size / 100 * coverage)]
        print("{:.0f}: {:.3f}, ".format(coverage, sum(covered_correct) / len(covered_correct) * 100.0), end="")
    print("")

    sr_results = list(zip(list(logits.max(-1)), list(correctness)))
    # sort the abstention results according to Softmax Response scores, from high to low
    sr_results.sort(key=lambda x: -x[0])
    # get the "correct or not" list for the sorted results
    sorted_correct = list(map(lambda x: int(x[1]), sr_results))
    size = len(sorted_correct)
    print("Softmax Response: accuracy of coverage ")
    for coverage in coverages:
        covered_correct = sorted_correct[: round(size / 100 * coverage)]
        print("{:.0f}: {:.3f}, ".format(coverage, sum(covered_correct) / len(covered_correct) * 100.0), end="")
    print("")


def compute_metrics(eval_preds):
    logits, labels = eval_preds  # output of forward
    if isinstance(logits, tuple):
        confidence = logits[1]
        logits = logits[0]
        if confidence.size == logits.shape[0]:
            evaluate_coverages(logits, labels, confidence)
    results = apply_metrics(labels, logits)
    return results