File size: 7,617 Bytes
1ceb840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import sys
import numpy as np
import pandas as pd
from metrics import ece_logits, aurc_logits, multi_aurc_plot, apply_metrics
from sklearn.metrics import f1_score
from collections import OrderedDict

EXPERIMENT_ROOT = "/mnt/lerna/experiments"


def softmax(x, axis=-1):
    # Subtract the maximum value for numerical stability
    x = x - np.max(x, axis=axis, keepdims=True)

    # Compute the exponentials of the shifted input
    exps = np.exp(x)

    # Compute the sum of exponentials along the last axis
    exps_sum = np.sum(exps, axis=axis, keepdims=True)

    # Compute the softmax probabilities
    softmax_probs = exps / exps_sum

    return softmax_probs


def predictions_loader(predictions_path):
    data = np.load(predictions_path)["arr_0"]
    dataset_idx = data[:, -1]
    labels = data[:, -2]
    if "DiT-base-rvl_cdip_MP" in predictions_path and any(x in predictions_path for x in ["first", "second", "last"]):
        data = data[:, :-2]  # logits
        predictions = np.argmax(data, -1)
    else:
        labels = data[:, -2].astype(int)
        predictions = data[:, -3].astype(int)
        data = data[:, :-3]  # logits
    return data, labels, predictions, dataset_idx


def compare_errors():
    """
    from scipy.stats import pearsonr, spearmanr
    #idx = [x for x in strategy_correctness['first'] if x ==0]
    spearmanr(strategy_correctness['first'], strategy_correctness['second'])
    #SignificanceResult(statistic=0.5429413617297623, pvalue=0.0)
    spearmanr(strategy_correctness['first'], strategy_correctness['last'])
    #SignificanceResult(statistic=0.5005224326802595, pvalue=0.0)

    pearsonr(strategy_correctness['first'], strategy_correctness['second'])
    #PearsonRResult(statistic=0.5429413617297617, pvalue=0.0)
    pearsonr(strategy_correctness['first'], strategy_correctness['last'])
    #PearsonRResult(statistic=0.5005224326802583, pvalue=0.0)
    """
    for dataset in ["rvl_cdip_n_mp"]:  # "DiT-base-rvl_cdip_MP",
        strategy_logits = {}
        strategy_correctness = {}
        for strategy in ["first", "second", "last"]:
            path = f"{EXPERIMENT_ROOT}/{dataset}/dit-base-finetuned-rvlcdip_{strategy}-0-final.npz"

            strategy_logits[strategy], labels, predictions, dataset_idx = predictions_loader(path)
            strategy_correctness[strategy] = (predictions == labels).astype(int)

        print("Base accuracy of first: ", np.mean(strategy_correctness["first"]))
        firstcorrectifsecondcorrect = [
            x if x == 1 else strategy_correctness["second"][i] for i, x in enumerate(strategy_correctness["first"])
        ]  # if x ==0]
        print(f"Accuracy of first when adding knowledge from second page: {np.mean(firstcorrectifsecondcorrect)}")
        firstcorrectiflastcorrect = [
            x if x == 1 else strategy_correctness["last"][i] for i, x in enumerate(strategy_correctness["first"])
        ]  # if x ==0]
        print(f"Accuracy of first when adding knowledge from last page: {np.mean(firstcorrectiflastcorrect)}")

        firstcorrectifsecondorlastcorrect = [
            x if x == 1 else (strategy_correctness["second"][i] or strategy_correctness["last"][i])
            for i, x in enumerate(strategy_correctness["first"])
        ]  # if x ==0]
        print(
            f"Accuracy of first when adding knowledge from second/last page: {np.mean(firstcorrectifsecondorlastcorrect)}"
        )

        # inverse
        print("Base accuracy of second: ", np.mean(strategy_correctness["second"]))
        secondcorrectiffirstcorrect = [
            x if x == 1 else strategy_correctness["first"][i] for i, x in enumerate(strategy_correctness["second"])
        ]  # if x ==0]
        print(f"Accuracy of second when adding knowledge from first page: {np.mean(secondcorrectiffirstcorrect)}")
        secondcorrectiflastcorrect = [
            x if x == 1 else strategy_correctness["last"][i] for i, x in enumerate(strategy_correctness["second"])
        ]  # if x ==0]
        print(f"Accuracy of second when adding knowledge from last page: {np.mean(secondcorrectiflastcorrect)}")

        # inverse second
        print("Base accuracy of last: ", np.mean(strategy_correctness["last"]))
        lastcorrectiffirstcorrect = [
            x if x == 1 else strategy_correctness["first"][i] for i, x in enumerate(strategy_correctness["last"])
        ]  # if x ==0]
        print(f"Accuracy of last when adding knowledge from first page: {np.mean(lastcorrectiffirstcorrect)}")
        lastcorrectifsecondcorrect = [
            x if x == 1 else strategy_correctness["second"][i] for i, x in enumerate(strategy_correctness["last"])
        ]  # if x ==0]
        print(f"Accuracy of last when adding knowledge from second page: {np.mean(lastcorrectifsecondcorrect)}")


def review_one(path):
    collect = OrderedDict()
    try:
        logits, labels, predictions, dataset_idx = predictions_loader(path)
    except Exception as e:
        print(f"something went wrong in inference loading {e}")
        return
    # print(logits.shape, labels.shape, logits[-1], labels[-1], dataset_idx[-1])
    y_correct = (predictions == labels).astype(int)
    acc = np.mean(y_correct)
    p_hat = np.array([softmax(p, -1)[predictions[i]] for i, p in enumerate(logits)])

    res = aurc_logits(
        y_correct, p_hat, plot=False, get_cache=True, use_as_is=True
    )  # DEV: implementation hack to allow for passing I[Y==y_hat] and p_hat instead of logits and label indices

    collect["aurc"] = res["aurc"]
    collect["accuracy"] = 100 * acc
    collect["f1"] = 100 * f1_score(labels, predictions, average="weighted")
    collect["f1_macro"] = 100 * f1_score(labels, predictions, average="macro")
    collect["ece"] = ece_logits(np.logical_not(y_correct), np.expand_dims(p_hat, -1), use_as_is=True)

    df = pd.DataFrame.from_dict([collect])
    # df = df[["accuracy", "f1", "f1_macro", "ece", "aurc"]]
    print(df.to_latex())
    print(df.to_string())
    return collect, res


def experiments_review():
    STRATEGIES = ["first", "second", "last", "max_confidence", "soft_voting", "hard_voting", "grid"]
    for dataset in ["DiT-base-rvl_cdip_MP", "rvl_cdip_n_mp"]:
        collect = {}
        aurcs = []
        caches = []
        for strategy in STRATEGIES:
            path = f"{EXPERIMENT_ROOT}/{dataset}/dit-base-finetuned-rvlcdip_{strategy}-0-final.npz"
            collect[strategy], res = review_one(path)
            aurcs.append(res["aurc"])
            caches.append(res["cache"])

        df = pd.DataFrame.from_dict(collect, orient="index")
        df = df[["accuracy", "f1", "f1_macro", "ece", "aurc"]]
        print(df.to_latex())
        print(df.to_string())
        """
        subset = [0, 1, 2]
        multi_aurc_plot(
            [x for i, x in enumerate(caches) if i in subset],
            [x for i, x in enumerate(STRATEGIES) if i in subset],
            aurcs=[x for i, x in enumerate(aurcs) if i in subset],
        )
        """


if __name__ == "__main__":
    from argparse import ArgumentParser

    parser = ArgumentParser("""Deeper evaluation of different inference strategies to classify a document""")
    DEFAULT = "./dit-base-finetuned-rvlcdip_last-10.npz"
    parser.add_argument(
        "predictions_path",
        type=str,
        default=DEFAULT,
        nargs="?",
        help="path to predictions",
    )

    args = parser.parse_args()
    if args.predictions_path == DEFAULT:
        experiments_review()
        compare_errors()
        sys.exit(1)

    print(f"Running default experiment on {args.predictions_path}")
    review_one(args.predictions_path)